鼓励合乘的可交易电子路票策略管理混合时代出行需求

发布时间:2024-11-26 07:49

股票交易策略16:了解交易规则,合法合规操作 #生活技巧# #理财规划技巧# #股票交易策略#

通过制定有效的交通管理措施合理引导通勤者的出行需求对于缓解城市交通拥堵和降低个体出行成本具有重要的现实意义.本文针对普通汽车和共享无人驾驶汽车共存的混合交通系统,以瓶颈模型为基础,研究实施可交易电子路票与鼓励合乘组合管理策略对通勤者出行行为的影响,并对交通管理策略参数(如鼓励合乘系数,电子路票收取数额)进行分析优化.研究表明,实施单一策略时,虽然部分通勤者转向共享合乘出行,但增大鼓励合乘力度反而使得共享合乘人数减少,系统最优解在交通管理策略参数满足某一特定关系时可以取得;实施时变策略则会产生较高的电子路票均衡价格,但系统总成本与实施单一策略相比较而言均降低更多.无论是实施单一策略还是时变策略,均能唯一确定电子路票均衡价格.本研究可为交通管理部门在混合出行时代下的出行需求引导策略制定提供理论参考.

Abstract

It is of great practical significance by adopting effective traffic management measures to guide the travel needs of commuters reasonably to alleviate the urban traffic congestion and reduce the individual travel cost. Based on the classical bottleneck model in a mixed transportation system with regular vehicles and autonomous vehicles, this paper studies the impact on commuters' travel behaviors after implementing the tradable credit scheme that encourages carpooling, and analyzes the traffic management strategy parameters (such as encouraging carpooling coefficients, the number of credits charged on road). The results show that, with the uniform strategy implemented, although some commuters turn to the ridesharing mode, increasing the encouragement of carpooling will reduce the number of ridesharing commuters. Meanwhile, the system optimal solutions can be obtained when the traffic management strategy parameters meet a specific relationship. Implementing a time-varying strategy will yield a higher equilibrium price for tradable credits, but the total system cost is reduced more than that under a uniform strategy. The equilibrium price of tradable credits can be uniquely determined whatever implementing a uniform or a time-varying strategy. This research can provide a theoretical reference for the traffic management department to formulate the travel demand guidance strategies in the era of mixed traffic.

关键词

城市交通 /瓶颈模型 /可交易电子路票 /鼓励合乘 /共享无人驾驶汽车{{custom_keyword}} /

Key words

urban traffic /bottleneck model /tradable credit scheme /encouraging carpooling /shared autonomous vehicle{{custom_keyword}} /

朱鸿伟, 田丽君, 许岩.

0" m-for-array="{{authorList_cn}}" m-for-val="custom_author" m-for-index="custom_index">0">, {{custom_author.name_cn}}.

鼓励合乘的可交易电子路票策略管理混合时代出行需求. 系统工程理论与实践, 2022, 42(5): 1314-1326 https://doi.org/10.12011/SETP2021-1305

ZHU Hongwei, TIAN Lijun, XU Yan.

0" m-for-array="{{authorList_en}}" m-for-val="custom_author" m-for-index="custom_index">0">, {{custom_author.name_en}}.

The tradable credit scheme that encourages carpooling manage the travel demand in the era of mixed traffic. Systems Engineering - Theory & Practice, 2022, 42(5): 1314-1326 https://doi.org/10.12011/SETP2021-1305

参考文献

[1] van den Berg V A C, Verhoef E T. Autonomous cars and dynamic bottleneck congestion:The effects on capacity, value of time and preference heterogeneity[J]. Transportation Research Part B, 2016, 94:43-60.
[2] Liu W. An equilibrium analysis of commuter parking in the era of autonomous vehicles[J]. Transportation Research Part C, 2018, 92:191-207.
[3] Bento A M, Hughes J E, Kaffine D. Carpooling and driver responses to fuel price changes:Evidence from traffic flows in los angeles[J]. Journal of Urban Economics, 2013, 77:41-56.
[4] Sala M, Soriguera F. Capacity of a freeway lane with platoons of autonomous vehicles mixed with regular traffic[J]. Transportation Research Part B, 2021, 147:116-131.
[5] Wang J, Peeta S, He X. Multiclass traffic assignment model for mixed traffic flow of human-driven vehicles and connected and autonomous vehicles[J]. Transportation Research Part B, 2019, 126:139-168.
[6] 田丽君, 吕成锐, 黄文彬. 基于累积前景理论的合乘行为建模与研究[J]. 系统工程理论与实践, 2016, 36(6):1576-1584.Tian L J, Lü C R, Huang W B. Modelling carpooling behavior based on cumulative prospect theory[J]. Systems Engineering-Theory & Practice, 2016, 36(6):1576-1584.
[7] Ma R, Zhang H M. The morning commute problem with ridesharing and dynamic parking charges[J]. Transportation Research Part B, 2017, 106:345-374.
[8] Vickrey W S. Congestion theory and transport investment[J]. American Economic Review, 1969, 59(2):251-260.
[9] Tian L J, Sheu J B, Huang H J. The morning commute problem with endogenous shared autonomous vehicle penetration and parking space constraint[J]. Transportation Research Part B, 2019, 123:258-278.
[10] Yang H, Wang X L. Managing network mobility with tradable credits[J]. Transportation Research Part B, 2011, 45(3):580-594.
[11] Verhoef E, Nijkamp P, Rietveld P. Tradeable permits:Their potential in the regulation of road transport externalities[J]. Environment Planning B:Planning Design, 1997, 24(4):527-548.
[12] Xu M, Grant-Muller S. Trip mode and travel pattern impacts of a tradable credits scheme:A case study of Beijing[J]. Transport Policy, 2016, 47:72-83.
[13] Zhu D L, Yang H, Li C M, et al. Properties of the multiclass traffic network equilibria under a tradable credit scheme[J]. Transportation Science, 2015, 49(3):519-534.
[14] 王广民, 高自友, 徐猛, 等. 弹性需求下网络设计问题和电子路票问题研究[J]. 管理科学学报, 2015, 18(4):38-48.Wang G M, Gao Z Y, Xu M, et al. The combined model and relaxation algorithm for continuous network design problem with the second-best credits charging under elastic demand[J]. Journal of Management Sciences in China, 2015, 18(4):38-48.
[15] 吴中明, 徐薇, 李敏. 异质用户下交通拥挤控制的混合策略研究[J]. 系统工程理论与实践, 2019, 39(11):2804-2814.Wu Z M, Xu W, Li M. Research on mixed strategy for traffic congestion control under user heterogeneity[J]. Systems Engineering-Theory & Practice, 2019, 39(11):2804-2814.
[16] 田丽君, 苏瑞超, 黄文彬. 可交易通行权和鼓励合乘政策下的通勤选择[J]. 系统工程理论与实践, 2017, 37(12):3193-3200.Tian L J, Su R C, Huang W B. Commuting mode choices under the combination policy of tradable credit scheme and encouraged carpooling[J]. Systems Engineering-Theory & Practice, 2017, 37(12):3193-3200.
[17] 王景鹏, 黄海军. 用于异质用户出行管理的可交易许可证研究[J]. 系统工程理论与实践, 2017, 37(5):1331-1338.Wang J P, Huang H J. Tradable permits for traffic management with user heterogeneity[J]. Systems Engineering-Theory & Practice, 2017, 37(5):1331-1338.
[18] Tian L J, Yang H, Huang H J. Tradable credit schemes for managing bottleneck congestion and modal split with heterogeneous users[J]. Transportation Research Part E, 2013, 54(6):1-13.
[19] 田丽君, 陈金凤, 徐淑贤. 双模式系统中组合策略与通行能力协同优化[J]. 系统工程理论与实践, 2021, 41(9):2355-2366.Tian L J, Chen J F, Xu S X. Collaborative optimization for the combined strategy and capacity allocation in a bi-modal system[J]. Systems Engineering-Theory & Practice, 2021, 41(9):2355-2366.
[20] Bao Y, Verhoef E T, Koster P. Regulating dynamic congestion externalities with tradable credit schemes:Does a unique equilibrium exist?[J]. Transportation Research Part B, 2019, 127:225-236.
[21] Chu X. Endogenous trip scheduling:The Henderson approach reformulated and compared with the Vickrey approach[J]. Journal of Urban Economics, 1995, 37(3):324-343.

{{custom_fnGroup.title_cn}}

脚注

{{custom_fn.content}}

基金

国家自然科学基金(71671044,71961023)

{{custom_fund}}

网址:鼓励合乘的可交易电子路票策略管理混合时代出行需求 https://www.yuejiaxmz.com/news/view/277415

相关内容

多模式出行场景下差异化激励绿色出行策略研究
出行连接未来︱年轻人的交通需求与繁荣之钥(下)
混合动力汽车节能机理及节能途径解析
合肥去大理攻略路线图及详细自驾游攻略
“十一”将至,如何合理出行?
可以随时随地做的小镇公交车:这是一种灵活便捷的交通服务,旨在满足小镇居民的出行需求,无论何时何地都能轻松搭乘
七部门要求提升二手商品交易:鼓励建设集中规范的“跳蚤市场”
倒计时三天,准备出发!2024上海简单生活节交通出行总攻略来了!
深圳鼓励合规翻新手机销售 爱回收等二手3C平台迎政策利好
便捷出行生活,推荐必备的出行API合辑

随便看看