智能家居系统安全综述

发布时间:2024-12-02 12:36

如何安装智能家居安全系统 #生活技巧# #居家生活技巧# #家居保养技巧# #智能家居使用#

摘要:

研究背景

物联网 (IoT) 的快速发展极大地改变了我们的现代生活。在众多物联网应用中,智能家居是增长最快的应用之一。然而,智能家居的快速发展也让智能家居系统成为了攻击者的目标。由于智能家居系统直接关系到用户的隐私和安全,因此智能家居系统的安全性显得尤为重要。最近,有大量关于增强智能家居系统的安全性的工作,但缺乏对相关工作系统性的总结和分析来方便科研人员实现更安全的智能家居生态。

目的

为了方便科研人员更系统地了解智能家居系统的安全性、构建更安全的智能家居生态,我们进行了有关智能家居系统安全性的详细文献综述。

方法

我们在对智能家居系统的安全问题进行大量调研的基础上,将智能家居系统分为平台安全、设备安全和通信安全三个领域。将平台领域存在的安全问题细分为编程、联动、认证、授权、语音助手以及隐私保护六个方面;将设备领域存在的安全问题细分为设备漏洞、传感器联动、侧信道攻击、认证、授权以及隐私保护六个方面;将通信领域存在的安全问题细分为协议漏洞、通信数据流两个方面。并对以上分类的各个安全问题进行文献的综述以及分析的小结。

结果

在探索了上述安全领域的研究和独特问题之后,我们认为当今智能家居系统中安全漏洞的根本原因在于智能家居系统的异构性,以及组成系统的各方缺乏明确的责任边界和统一的标准。在确定智能家居系统安全漏洞产生的根本原因之后,我们给出了三个智能家居生态安全的未来研究方向,包括开发更自动化的漏洞挖掘工具、对智能家居系统进行更严格的安全检查,以及通过智能家居系统生成的数据进行安全分析。

结论

本文对智能家居系统的安全性研究进行了全面综述。我们概述了当前智能家居系统的典型架构,包括关键组件及其相互作用。然后将安全问题分为三个领域:平台安全、设备安全和通信安全,并对这些安全问题的各个领域进行了详细的文献综述。然后我们总结出当前智能家居系统安全缺陷的根本原因。为了开发更安全的智能家居系统,我们还讨论了未来的研究方向,这将有助于更好地研究智能家居系统的安全性,并为智能家居系统提供更有力的安全保障。

Abstract:

Among the plethora of IoT (Internet of Things) applications, the smart home is one of the fastest-growing. However, the rapid development of the smart home has also made smart home systems a target for attackers. Recently, researchers have made many efforts to investigate and enhance the security of smart home systems. Toward a more secure smart home ecosystem, we present a detailed literature review on the security of smart home systems. Specifically, we categorize smart home systems’ security issues into the platform, device, and communication issues. After exploring the research and specific issues in each of these security areas, we summarize the root causes of the security flaws in today's smart home systems, which include the heterogeneity of internal components of the systems, vendors' customization, the lack of clear responsibility boundaries and the absence of standard security standards. Finally, to better understand the security of smart home systems and potentially provide better protection for smart home systems, we propose research directions, including automated vulnerability mining, vigorous security checking, and data-driven security analysis.

Figure  1.   Architecture of smart home systems.

Figure  2.   Scope of influence of smart home systems security issues.

Table  1   Research Type of Smart Home Systems Security

Analysis Field Security Issue Category Specific Issue Platform security Platform programming, platform linkage, authentication, authorization, voice assistant, platform privacy protection API interface interaction vulnerabilities, application dependency conflicts, violations, cheats, defective authentication between users and platforms, vulnerable access control between users and platforms, defective speech recognition algorithm, information maliciously leaked Device security Device vulnerability, sensor linkage, side-channel information, authentication, authorization, device privacy protection Devices abused or disabled, device sensor dependency conflicts, violations, cheats, device cheating and privacy disclosure, defective authentication between users and devices, vulnerable access control between users and devices, information maliciously leaked Communication security Protocol vulnerability, communication flow Protocol connectivity abused, information maliciously leaked

Table  2   Comparison of Firmware Vulnerability Mining Methods

Literature Vulnerability Type Discovery Method Dynamic/Static Large-Scale Analyzed Type Firmalice[47] Authentication bypass Symbolic execution Static No Binary FIRMADYNE[49] Software vulnerabilities Fuzzing Dynamic Yes Binary FIRM-AFL[50] Software vulnerabilities Fuzzing Dynamic Yes Binary Wang et al.[51] Software vulnerabilities Program analysis Static Yes App source code Diane[52] Software vulnerabilities Fuzzing Dynamic Yes App source code

Table  3   Comparison of Device Authentication (AuthN) Methods

Literature Type Method Encryption Resistant to Attacks P2Auth[58] Biometrics Physical operation - Replay attack, imitation attack T2Pair[18] Biometrics Physical operation Diffie-Hellman encryption Imitation attack, man-in-the-middle attack Lee et al.[59] Biometrics Random vibrations - Not-in-wear attacks, impersonation attacks Alam[60] Key Trusted registration agency Bitwise XOR, symmetric key, one-way hash Replay attack, desynchronization attack Wazid et al.[61] Key Trusted registration agency One-way hash, bitwise XOR, symmetric key Imitation attacks, internal privilege attacks Zhang et al.[62] Key Key agreement Merkle puzzle Brute force password cracking HomeChain[63] Key Integrated blockchain Public key encryption, symmetric encryption, group signature Hijacking attacks, denial of service attacks Huang et al.[64] Key Keyless authentication Hash collision puzzle Replay attacks, message forgery attacks, man-in-the-middle attacks [1]

Kumar P, Braeken A, Gurtov A, Iinatti J, Ha P H. Anonymous secure framework in connected smart home environments. IEEE Transactions on Information Forensics and Security, 2017, 12(4): 968–979. DOI: 10.1109/TIFS.2016.2647225.

[2]

Stanislav M, Beardsley T. HACKING IoT: A case study on baby monitor exposures and vulnerabilities. Rapid7, 2015. https://www.rapid7.com/globalassets/external/docs/Hacking-IoT-A-Case-Study-on-Baby-Monitor-Exposures-and-Vulnerabilities.pdf, Mar. 2023.

[3]

Antonakakis M, April T, Bailey M, Bernhard M, Bursztein E, Cochran J, Durumeric Z, Halderman J A, Invernizzi L, Kallitsis M, Kumar D, Lever C, Ma Z E, Mason J, Menscher D, Seaman C, Sullivan N, Thomas K, Zhou Y. Understanding the Mirai botnet. In Proc. the 26th USENIX Conference on Security Symposium, Aug. 2017, pp.1093–1110.

[4]

Fernandes E, Jung J, Prakash A. Security analysis of emerging smart home applications. In Proc. the 2016 IEEE Symposium on Security and Privacy, May 2016, pp.636–654. DOI: 10.1109/SP.2016.44.

[5]

Zhang N, Mi X H, Feng X, Wang X F, Tian Y, Qian F. Dangerous skills: Understanding and mitigating security risks of voice-controlled third-party functions on virtual personal assistant systems. In Proc. the 2019 IEEE Symposium on Security and Privacy, May 2019, pp.1381–1396. DOI: 10.1109/SP.2019.00016.

[6]

Dong Y D, Yao Y D. Secure mmWave-radar-based speaker verification for IoT smart home. IEEE Internet of Things Journal, 2021, 8(5): 3500–3511. DOI: 10.1109/JIOT.2020.3023101.

[7]

Xiao Y H, Jia Y Z, Liu C C, Alrawais A, Rekik M, Shan Z G. HomeShield: A credential-less authentication framework for smart home systems. IEEE Internet of Things Journal, 2020, 7(9): 7903–7918. DOI: 10.1109/JIOT.2020.3003621.

[8]

Zhang G M, Yan C, Ji X Y, Zhang T C, Zhang T M, Xu W Y. DolphinAttack: Inaudible voice commands. In Proc. the 2017 ACM SIGSAC Conference on Computer and Communications Security, Oct. 2017, pp.103–117. DOI: 10.1145/3133956.3134052.

[9]

Yuan X J, Chen Y X, Zhao Y, Long Y H, Liu X K, Chen K, Zhang S Z, Huang H Q, Wang X F, Gunter C A. CommanderSong: A systematic approach for practical adversarial voice recognition. In Proc. the 27th USENIX Conference on Security Symposium, Aug. 2018, pp.49–64.

[10]

Mi X H, Qian F, Zhang Y, Wang X F. An empirical characterization of IFTTT: Ecosystem, usage, and performance. In Proc. the 2017 Internet Measurement Conference, Nov. 2017, pp.398–404. DOI: 10.1145/3131365.3131369.

[11]

Wang Q, Datta P, Yang W, Liu S, Bates A, Gunter C A. Charting the attack surface of trigger-action IoT platforms. In Proc. the 2019 ACM SIGSAC Conference on Computer and Communications Security, Nov. 2019, pp.1439–1453. DOI: 10.1145/3319535.3345662.

[12]

Xiao D, Wang Q Y, Cai M, Zhu Z H, Zhao W M. A3ID: An automatic and interpretable implicit interference detection method for smart home via knowledge graph. IEEE Internet of Things Journal, 2020, 7(3): 2197–2211. DOI: 10.1109/JIOT.2019.2959063.

[13]

Ding W B, Hu H X. On the safety of IoT device physical interaction control. In Proc. the 2018 ACM SIGSAC Conference on Computer and Communications Security, Oct. 2018, pp.832–846. DOI: 10.1145/3243734.3243865.

[14]

Griffioen H, Doerr C. Examining Mirai's battle over the Internet of Things. In Proc. the 2020 ACM SIGSAC Conference on Computer and Communications Security, Oct. 2020, pp.743–756. DOI: 10.1145/3372297.3417277.

[15]

Kumar D, Shen K, Case B, Garg D, Alperovich G, Kuznetsov D, Gupta R, Durumeric Z. All things considered: An analysis of IoT devices on home networks. In Proc. the 28th USENIX Conference on Security Symposium, Aug. 2019, pp.1169–1185.

[16]

Tu Y Z, Rampazzi S, Hao B, Rodriguez A, Fu K, Hei X L. Trick or heat?: Manipulating critical temperature-based control systems using rectification attacks. In Proc. the 2019 ACM SIGSAC Conference on Computer and Communications Security, Nov. 2019, pp.2301–2315. DOI: 10.1145/3319535.3354195.

[17]

Liu X Y, Zhou Z, Diao W R, Li Z, Zhang K H. When good becomes evil: Keystroke inference with smartwatch. In Proc. the 22nd ACM SIGSAC Conference on Computer and Communications Security, Oct. 2015, pp.1273–1285. DOI: 10.1145/2810103.2813668.

[18]

Li X P, Zeng Q, Luo L N, Luo T B. T2Pair: Secure and usable pairing for heterogeneous IoT devices. In Proc. the 2020 ACM SIGSAC Conference on Computer and Communications Security, Oct. 2020, pp.309–323. DOI: 10.1145/3372297.3417286.

[19]

Trimananda R, Varmarken J, Markopoulou A, Demsky B. Packet-level signatures for smart home devices. In Proc. the 27th Annual Network and Distributed System Security Symposium, Feb. 2020.

[20]

Yu L J, Luo B, Ma J, Zhou Z Y, Liu Q Y. You are what you broadcast: Identification of mobile and IoT devices from (public) WiFi. In Proc. the 29th USENIX Security Symposium, Aug. 2020, pp.55–72.

[21]

Ronen E, Shamir A, Weingarten A O, O'Flynn C. IoT goes nuclear: Creating a ZigBee chain reaction. In Proc. the 2017 IEEE Symposium on Security and Privacy, May 2017, pp.195–212. DOI: 10.1109/SP.2017.14.

[22]

Zuo C S, Wen H H, Lin Z Q, Zhang Y Q. Automatic fingerprinting of vulnerable BLE IoT devices with static UUIDs from mobile apps. In Proc. the 2019 ACM SIGSAC Conference on Computer and Communications Security, Nov. 2019, pp.1469–1483. DOI: 10.1145/3319535.3354240.

[23]

Cominelli M, Gringoli F, Patras P, Lind M, Noubir G. Even black cats cannot stay hidden in the dark: Full-band de-anonymization of bluetooth classic devices. In Proc. the 2020 IEEE Symposium on Security and Privacy, May 2020, pp.534–548. DOI: 10.1109/SP40000.2020.00091.

[24]

Zhu Y Z, Xiao Z J, Chen Y X, Li Z J, Liu M, Zhao B Y, Zheng H. Et Tu Alexa? When commodity WiFi devices turn into adversarial motion sensors. In Proc. the 27th Annual Network and Distributed System Security Symposium, Feb. 2020.

[25]

Jia Y, Xing L Y, Mao Y H, Zhao D F, Wang X F, Zhao S R, Zhang Y Q. Burglars' IoT paradise: Understanding and mitigating security risks of general messaging protocols on IoT clouds. In Proc. the 2020 IEEE Symposium on Security and Privacy, May 2020, pp.465–481. DOI: 10.1109/SP40000.2020.00051.

[26]

Cheng L, Wilson C, Liao S, Young J, Dong D, Hu H X. Dangerous skills got certified: Measuring the trustworthiness of skill certification in voice personal assistant platforms. In Proc. the 2020 ACM SIGSAC Conference on Computer and Communications Security, Oct. 2020, pp.1699–1716. DOI: 10.1145/3372297.3423339.

[27]

Antonioli D, Tippenhauer N O, Rasmussen K B. Nearby threats: Reversing, analyzing, and attacking Google's `nearby connections' on Android. In Proc. the 26th Annual Network and Distributed System Security Symposium, Feb. 2019.

[28]

Zhang W, Meng Y, Liu Y G, Zhang X K, Zhang Y Q, Zhu H J. HoMonit: Monitoring smart home apps from encrypted traffic. In Proc. the 2018 ACM SIGSAC Conference on Computer and Communications Security, Oct. 2018, pp.1074–1088. DOI: 10.1145/3243734.3243820.

[29]

Celik Z B, Tan G, McDaniel P D. IoTGuard: Dynamic enforcement of security and safety policy in commodity IoT. In Proc. the 26th Annual Network and Distributed System Security Symposium, Feb. 2019.

[30]

Ding W B, Hu H X, Cheng L. IoTSafe: Enforcing safety and security policy with real IoT physical interaction discovery. In Proc. the 28th Annual Network and Distributed System Security Symposium, Feb. 2021.

[31]

Liu R J, Wang Z Q, Garcia L, Srivastava M B. RemedioT: Remedial actions for Internet-of-Things conflicts. In Proc. the 6th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, Nov. 2019, pp.101–110. DOI: 10.1145/3360322.3360837.

[32]

Hsu K H, Chiang Y H, Hsiao H C. SafeChain: Securing trigger-action programming from attack chains. IEEE Transactions on Information Forensics and Security, 2019, 14(10): 2607–2622. DOI: 10.1109/TIFS.2019.2899758.

[33]

Yuan B, Jia Y, Xing L Y, Zhao D F, Wang X F, Zou D Q, Jin H, Zhang Y Q. Shattered chain of trust: Understanding security risks in cross-cloud IoT access delegation. In Proc. the 29th USENIX Conference on Security Symposium, Aug. 2020, Article No. 67.

[34]

Schuster R, Shmatikov V, Tromer E. Situational access control in the Internet of Things. In Proc. the 2018 ACM SIGSAC Conference on Computer and Communications Security, Oct. 2018, pp.1056–1073. DOI: 10.1145/3243734.3243817.

[35]

Tian Y, Zhang N, Lin Y H, Wang X F, Ur B, Guo X Z, Tague P. SmartAuth: User-centered authorization for the Internet of Things. In Proc. the 26th USENIX Conference on Security Symposium, Aug. 2017, pp.361–378.

[36]

Jia Y J, Chen Q A, Wang S Q, Rahmati A, Fernandes E, Mao Z M, Prakash A, Unviersity S J. ContexloT: Towards providing contextual integrity to appified IoT platforms. In Proc. the 24th Annual Network and Distributed System Security Symposium, Feb. 2017.

[37]

Ghosh N, Chandra S, Sachidananda V, Elovici Y. SoftAuthZ: A context-aware, behavior-based authorization framework for home IoT. IEEE Internet of Things Journal, 2019, 6(6): 10773–10785. DOI: 10.1109/JIOT.2019.2941767.

[38]

Fernandes E, Rahmati A, Jung J, Prakash A. Decentralized action integrity for trigger-action IoT platforms. In Proc. the 25th Annual Network and Distributed System Security Symposium, Feb. 2018.

[39]

He W J, Golla M, Padhi R, Ofek J, Dürmuth M, Fernandes E, Ur B. Rethinking access control and authentication for the home Internet of Things (IoT). In Proc. the 27th USENIX Conference on Security Symposium, Aug. 2018, pp.255–272.

[40]

Yan Q B, Liu K H, Zhou Q, Guo H Q, Zhang N. SurfingAttack: Interactive hidden attack on voice assistants using ultrasonic guided waves. In Proc. the 27th Annual Network and Distributed System Security Symposium, Feb. 2020.

[41]

Zhang Y Y, Xu L, Mendoza A, Yang G L, Chinprutthiwong P, Gu G F. Life after speech recognition: Fuzzing semantic misinterpretation for voice assistant applications. In Proc. the 26th Annual Network and Distributed System Security Symposium, Feb. 2019.

[42]

Mao J, Zhu S S, Dai X, Lin Q X, Liu J W. Watchdog: Detecting ultrasonic-based inaudible voice attacks to smart home systems. IEEE Internet of Things Journal, 2020, 7(9): 8025–8035. DOI: 10.1109/JIOT.2020.2997779.

[43]

Meng Y, Zhu H J, Li J L, Li J, Liu Y. Liveness detection for voice user interface via wireless signals in IoT environment. IEEE Transactions on Dependable and Secure Computing, 2021, 18(6): 2996–3011. DOI: 10.1109/TDSC.2020.2973620.

[44]

Bastys I, Balliu M, Sabelfeld A. If this then what?: Controlling flows in IoT apps. In Proc. the 2018 ACM SIGSAC Conference on Computer and Communications Security, Oct. 2018, pp.1102–1119. DOI: 10.1145/3243734.3243841.

[45]

Fernandes E, Paupore J, Rahmati A, Simionato D, Conti M, Prakash A. FlowFence: Practical data protection for emerging IoT application frameworks. In Proc. the 25th USENIX Security Symposium, Aug. 2016, pp.531–548.

[46]

Sun K, Chen C, Zhang X Y. “Alexa, stop spying on me!”: Speech privacy protection against voice assistants. In Proc. the 18th Conference on Embedded Networked Sensor Systems, Nov. 2020, pp.298–311. DOI: 10.1145/3384419.3430727.

[47]

Shoshitaishvili Y, Wang R Y, Hauser C, Kruegel C, Vigna G. Firmalice-automatic detection of authentication bypass vulnerabilities in binary firmware. In Proc. the 22nd Annual Network and Distributed System Security Symposium, Feb. 2015.

[48]

Alrawi O, Lever C, Valakuzhy K, Court R, Snow K Z, Monrose F, Antonakakis M. The circle of life: A large-scale study of the IoT malware lifecycle. In Proc. the 30th USENIX Security Symposium, Aug. 2021, pp.3505–3522.

[49]

Chen D D, Woo M, Brumley D, Egele M. Towards automated dynamic analysis for Linux-based embedded firmware. In Proc. the 23rd Annual Network and Distributed System Security Symposium, Feb. 2016.

[50]

Zheng Y W, Davanian A, Yin H, Song C Y, Zhu H S, Sun L M. FIRM-AFL: High-throughput greybox fuzzing of IoT firmware via augmented process emulation. In Proc. the 28th USENIX Conference on Security Symposium, Aug. 2019, pp.1099–1114.

[51]

Wang X Q, Sun Y Q, Nanda S, Wang X F. Looking from the mirror: Evaluating IoT device security through mobile companion apps. In Proc. the 28th USENIX Conference on Security Symposium, Aug. 2019, pp.1151–1167.

[52]

Redini N, Continella A, Das D, de Pasquale G, Spahn N, Machiry A, Bianchi A, Kruegel C, Vigna G. Diane: Identifying fuzzing triggers in apps to generate under-constrained inputs for IoT devices. In Proc. the 2021 IEEE Symposium on Security and Privacy, May 2021, pp.484–500. DOI: 10.1109/SP40001.2021.00066.

[53]

Birnbach S, Eberz S, Martinovic I. Peeves: Physical event verification in smart homes. In Proc. the 2019 ACM SIGSAC Conference on Computer and Communications Security, Nov. 2019, pp.1455–1467. DOI: 10.1145/3319535.3354254.

[54]

Sikder A K, Aksu H, Uluagac A S. 6thSense: A context-aware sensor-based attack detector for smart devices. In Proc. the 26th USENIX Security Symposium, Aug. 2017, pp.397–414.

[55]

Cameranesi M, Diamantini C, Mircoli A, Potena D, Storti E. Extraction of user daily behavior from home sensors through process discovery. IEEE Internet of Things Journal, 2020, 7(9): 8440–8450. DOI: 10.1109/JIOT.2020.2990537.

[56]

Bianchi V, Bassoli M, Lombardo G, Fornacciari P, Mordonini M, de Munari I. IoT wearable sensor and deep learning: An integrated approach for personalized human activity recognition in a smart home environment. IEEE Internet of Things Journal, 2019, 6(5): 8553–8562. DOI: 10.1109/JIOT.2019.2920283.

[57]

Sami S, Dai Y M, Tan S R X, Roy N, Han J. Spying with your robot vacuum cleaner: Eavesdropping via lidar sensors. In Proc. the 18th Conference on Embedded Networked Sensor Systems, Nov. 2020, pp.354–367. DOI: 10.1145/3384419.3430781.

[58]

Li X P, Yan F Y, Zuo F, Zeng Q, Luo L N. Touch well before use: Intuitive and secure authentication for IoT devices. In Proc. the 25th Annual International Conference on Mobile Computing and Networking, Aug. 2019, Article No. 33. DOI: 10.1145/3300061.3345434.

[59]

Lee S, Choi W, Lee D H. Usable user authentication on a smartwatch using vibration. In Proc. the 2021 ACM SIGSAC Conference on Computer and Communications Security, Nov. 2021, pp.304–319. DOI: 10.1145/3460120.3484553.

[60]

Iqbal W, Abbas H, Deng P, Wan J F, Rauf B, Abbas Y, Rashid I. ALAM: Anonymous lightweight authentication mechanism for SDN-enabled smart homes. IEEE Internet of Things Journal, 2021, 8(12): 9622–9633. DOI: 10.1109/JIOT.2020.3024058.

[61]

Wazid M, Das A K, Odelu V, Kumar N, Susilo W. Secure remote user authenticated key establishment protocol for smart home environment. IEEE Transactions on Dependable and Secure Computing, 2020, 17(2): 391–406. DOI: 10.1109/TDSC.2017.2764083.

[62]

Zhang Y X, Huang X Y, Chen X F, Zhang L Y, Zhang J, Xiang Y. A hybrid key agreement scheme for smart homes using the Merkle puzzle. IEEE Internet of Things Journal, 2020, 7(2): 1061–1071. DOI: 10.1109/JIOT.2019.2949407.

[63]

Lin C, He D B, Kumar N, Huang X Y, Vijayakumar P, Choo K R. HomeChain: A blockchain-based secure mutual authentication system for smart homes. IEEE Internet of Things Journal, 2020, 7(2): 818–829. DOI: 10.1109/JIOT.2019.2944400.

[64]

Huang Z G, Zhang L, Meng X Y, Choo K R. Key-free authentication protocol against subverted indoor smart devices for smart home. IEEE Internet of Things Journal, 2020, 7(2): 1039–1047. DOI: 10.1109/JIOT.2019.2948622.

[65]

Neto A L M, Souza A L F, Cunha I et al. AoT: Authentication and access control for the entire IoT device life-cycle. In Proc. the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM, Nov. 2016. DOI: 10.1145/2994551.2994555.

[66]

Jia Y, Yuan B, Xing L Y et al. Who's in control? On security risks of disjointed IoT device management channels. In Proc. the 2021 ACM SIGSAC Conference on Computer and Communications Security, Nov. 2021, pp.1289–1305. DOI: 10.1145/3460120.3484592.

[67]

Yu H, Lim J, Kim K, Lee S B. Pinto: Enabling video privacy for commodity IoT cameras. In Proc. the 2018 ACM SIGSAC Conference on Computer and Communications Security, Oct. 2018, pp.1089–1101. DOI: 10.1145/3243734.3243830.

[68]

Fang L, Wu Y, Wu C, Yu Y Z. A nonintrusive elderly home monitoring system. IEEE Internet of Things Journal, 2021, 8(4): 2603–2614. DOI: 10.1109/JIOT.2020.3019270.

[69]

Javaid U, Aman M N, Sikdar B. BlockPro: Blockchain based data provenance and integrity for secure IoT environments. In Proc. the 1st Workshop on Blockchain-Enabled Networked Sensor Systems, Nov. 2018, pp.13–18. DOI: 10.1145/3282278.3282281.

[70]

Lee S S, Shi H, Tan K, Liu Y X, Lee S K, Cui Y. S2Net: Preserving privacy in smart home routers. IEEE Transactions on Dependable and Secure Computing, 2021, 18(3): 1409–1424. DOI: 10.1109/TDSC.2019.2924624.

[71]

Zhang Y, Weng J, Dey R, Jin Y E, Lin Z Q, Fu X W. Breaking secure pairing of Bluetooth low energy using downgrade attacks. In Proc. the 29th USENIX Security Symposium, Aug. 2020, pp.37–54.

[72]

Lei X Y, Tu G H, Li C Y, Xie T, Zhang M. SecWIR: Securing smart home IoT communications via Wi-Fi routers with embedded intelligence. In Proc. the 18th Int. Con. Mobile Systems, Applications, and Services, Jun. 2020, pp.260–272. DOI: 10.1145/3386901.3388941.

[73]

Brunisholz P, Rousseau F, Duda A. DataTweet for user-centric and geo-centric IoT communications. In Proc. the 2nd Workshop on Experiences in the Design and Implementation of Smart Objects, Oct. 2016, pp.29–34. DOI: 10.1145/2980147.2980152.

[74]

Wilson J, Wahby R S, Corrigan-Gibbs H, Boneh D, Levis P A, Winstein K. Trust but verify: Auditing the secure Internet of Things. In Proc. the 15th Annual Int. Con. Mobile Systems, Applications, and Services, Jun. 2017, pp.464–474. DOI: 10.1145/3081333.3081342.

[75]

Luo Z Q, Wang W, Qu J, Jiang T, Zhang Q. ShieldScatter: Improving IoT security with backscatter assistance. In Proc. the 16th ACM Conference on Embedded Networked Sensor Systems, 2018, pp.185–198. DOI: 10.1145/3274783.3274841.

[76]

Zhang Y X, Zhao H, Xiang Y, Huang X Y, Chen X F. A key agreement scheme for smart homes using the secret mismatch problem. IEEE Internet of Things Journal, 2019, 6(6): 10251–10260. DOI: 10.1109/JIOT.2019.2936884.

[77]

Sciancalepore S, Capossele A, Piro G, Boggia G, Bianchi G. Key management protocol with implicit certificates for IoT systems. In Proc. the 2015 Workshop on IoT challenges in Mobile and Industrial Systems, May 2015, pp.37–42. DOI: 10.1145/2753476.2753477.

[78]

Kar P, Misra S, Mandal A K, Wang H. SecureioT: Hop-count based service-oriented efficient security solution for IoT. In Proc. the 1st International Workshop on Future Industrial Communication Networks, Oct. 2018, pp.15–20. DOI: 10.1145/3243318.3243323.

[79]

Borgia E, Bruno R, Passarella A. MobCCN: A CCN-compliant protocol for data collection with opportunistic contacts in IoT environments. In Proc. the 11th ACM Workshop on Challenged Networks, Oct. 2016, pp.63–68. DOI: 10.1145/2979683.2979695.

[80]

Beyer S M, Mullins B E, Graham S R, Bindewald J M. Pattern-of-life modeling in smart homes. IEEE Internet of Things Journal, 2018, 5(6): 5317–5325. DOI: 10.1109/JIOT.2018.2840451.

期刊类型引用(1)

1. Narmeen Shafqat, Aanjhan Ranganathan. Seamlessly Insecure: Uncovering Outsider Access Risks in AiDot-Controlled Matter Devices. 2024 IEEE Security and Privacy Workshops (SPW), 必应学术

其他类型引用(0)

网址:智能家居系统安全综述 https://www.yuejiaxmz.com/news/view/346911

相关内容

人工智能系统安全综述
智能小区安全防范系统综述
专题丨人工智能系统安全综述
智能家居综述报告
智能家居控制系统概述
家居别墅智能化系统概述
嵌入式系统安全综述
家居智能安全系统设计
超级智慧家讲解智能安防系统、居家安全系统、智能环境系统、智能情景系统
智能家居安全系统:你的家真的安全吗?

随便看看