基于深度强化学习的新型电力系统调度优化方法综述
使用强化学习优化深度模型,如DQN(深度Q学习) #生活技巧# #学习技巧# #深度学习技巧#
基于深度强化学习的新型电力系统调度优化方法综述
作者单位:
1.浙江大学电气工程学院,浙江省杭州市 310027;2.之江实验室,浙江省杭州市 311121
摘要:
随着新能源并网规模不断扩大,能源形式更加灵活多变,电力系统调度运行面临新的挑战。随着系统复杂度和不确定性增加,传统基于物理模型的优化方法难以建立精确的模型进行实时快速求解,而深度强化学习(DRL)可以从历史经验中自适应地学习调度策略并实时决策,避免了复杂的建模过程,以数据驱动的方式应对更高的不确定性和复杂度。文中首先介绍了新型电力系统调度运行问题;然后,介绍了DRL原理及其分类算法;接着,分析了各类DRL算法在求解新型电力系统调度决策问题时的优势与劣势;最后,对需进一步研究的方向进行了展望。
基金项目:
国家自然科学基金资助项目(U22B2098);浙江省自然科学基金资助项目(LQ20E070002);国家留学基金资助项目(202106320157)。
作者简介:
冯斌(1997—),男,博士研究生,主要研究方向:人工智能在电力系统中的应用。E-mail:fengbinhz@zju.edu.cn
胡轶婕(2000—),女,博士研究生,主要研究方向:人工智能在电力系统中的应用。E-mail:huyijie12210071@zju.edu.cn
黄刚(1991—),男,博士,副研究员,主要研究方向:机器学习、运筹优化等算法及其在网络化系统中的应用。E-mail:huanggang@zju.edu.cn
郭创新(1969—),男,通信作者,博士,教授,主要研究方向:智能电网风险评估与调度决策、综合能源系统规划运行。E-mail:guochuangxin@zju.edu.cn
Review on Optimization Methods for New Power System Dispatch Based on Deep Reinforcement Learning
Author:
FENG Bin 1FENG Bin
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
在知网中查找
在百度中查找
在本站中查找
HU Yijie
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
在知网中查找
在百度中查找
在本站中查找
JIANG Wei
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
在知网中查找
在百度中查找
在本站中查找
XU Huating
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
在知网中查找
在百度中查找
在本站中查找
GUO Chuangxin
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
在知网中查找
在百度中查找
在本站中查找
Affiliation:
1.College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China;2.Zhijiang Laboratory, Hangzhou 311121, China
Abstract:
With the continuous expansion of renewable energy integration scale, energy forms become more flexible and diverse, which presents new challenges to the dispatch operation of power systems. As the complexity and uncertainty of the system increase, the traditional optimization methods based on physical models are difficult to establish the accurate models for real-time and rapid solutions. In contrast, the deep reinforcement learning (DRL) can adaptively learn the scheduling strategies and make real-time decisions from historical experiences, avoiding the complex modeling process and coping with higher uncertainty and complexity in a data-driven manner. In this paper, the dispatch operation problems of new power systems are firstly introduced, then the principles and classification of DRL are described, and the advantages and disadvantages of various DRL methods to solve the dispatch decision problems of new power systems are analyzed. Finally, the trends that need further research are prospected.
Foundation:
This work is supported by National Natural Science Foundation of China (No. U22B2098), Zhejiang Provincial Natural Science Foundation of China (No. LQ20E070002), and National Scholarship Fund of China (No. 202106320157).
网址:基于深度强化学习的新型电力系统调度优化方法综述 https://www.yuejiaxmz.com/news/view/356209
相关内容
【科技前沿】用深度强化学习优化电网,让电力调度更聪明!智能电网与电力系统调度优化研究
一种基于深度学习的个性化推荐系统
【ML4CO论文精读】基于深度强化学习的组合优化问题研究进展(李凯文, 2020)
基于深度学习的电子商务个性化推荐模型
毕业设计:基于深度学习的商品个性化推荐系统
探讨优化电力调控运行系统的方法
深度学习中的优化问题(Optimization)
【优化调度】基于多时间尺度的电动汽车光伏充电站联合分层优化调度附Matlab代码
个性化推荐系统五大研究热点:深度学习、知识图谱、强化学习、用户画像、可解释推荐