表观遗传调控:基于染色质环境的DNA双链断裂修复
DNA是遗传物质,包含生物的基因信息 #生活知识# #科学#
[1] Zhu P, Li G. Structural insights of nucleosome and the 30-nm chromatin fiber[J]. Curr Opin Struct Biol, 2016, 36: 106-115
[2] Dekker J, Mirny L. The 3D genome as moderator of chromosomal communication[J]. Cell, 2016, 164(6): 1110-1121
[3] Mladenov E, Magin S, Soni A, et al. DNA double-strand-break repair in higher eukaryotes and its role in genomic instability and cancer: Cell cycle and proliferation-dependent regulation [J]. Semin Cancer Biol, 2016, 37-38: 51-64
[4] Lee CS, Wang RF, Chang HH, et al. Chromosome position determines the success of double- strand break repair[J]. Proc Natl Acad Sci U S A, 2016, 113(2): E146-E154
[5] Agmon N, Liefshitz B, Zimmer C, et al. Effect of nuclear architecture on the efficiency of double-strand break repair[J]. Nat Cell Biol, 2013, 15(6): 694-699
[6] Clouaire T, Legube G. DNA double strand break repair pathway choice: a chromatin based decision?[J]. Nucleus, 2015, 6(2): 107-113
[7] Kalousi A, Soutoglou E. Nuclear compartmentalization of DNA repair[J]. Curr Opin Genet Dev, 2016, 37: 148-157
[8] Blackford AN, Jackson SP. ATM, ATR, and DNA-PK: The trinity at the heart of the DNA damage response[J]. Mol Cell, 2017, 66(6): 801-817
[9]O'Connor MJ. Targeting the DNA damage response in cancer[J].Mol Cell,2015, 60(4): 547-560
[10] Watanabe S, Watanabe K, Akimov V, et al. JMJD1C demethylates MDC1 to regulate the RNF8 and BRCA1-mediated chromatin response to DNA breaks[J]. Nat Struct Mol Biol, 2013, 20(12): 1425-1433
[11] Wang Q, Ma S, Song N, et al. Stabilization of histone demethylase PHF8 by USP7 promotes breast carcinogenesis[J]. J Clin Invest, 2016, 126(6): 2205-2220
[12] Tang J, Cho NW, Cui G, et al. Acetylation limits 53BP1 association with damaged chromatin to promote homologous recombination[J]. Nat Struct Mol Biol, 2013, 20(3): 317-325
[13] Pfister SX, Ahrabi S, Zalmas LP, et al. SETD2-dependent histone H3K36 trimethylation is required for homologous recombination repair and genome stability[J]. Cell Rep, 2014, 7(6): 2006-2018
[14] Feinberg AP, Koldobskiy MA, Göndör A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression[J]. Nat Rev Genet, 2016, 17(5): 284-299
[15] Caron P, Aymard F, Iacovoni JS, et al. Cohesin protects genes against γH2AX induced by DNA double-strand breaks[J]. PLoS Genet, 2012, 8(1): e1002460
[16] Aymard F, Legube G. A TAD closer to ATM[J]. Mol Cell Oncol, 2016, 3(3): e1134411
[17] Savic VB, Yin NL, Maas NL, et al. Formation of dynamic γ-H2AX domains along broken DNA strands is distinctly regulated by ATM and MDC1 and dependent upon H2AX densities in chromatin[J]. Mol Cell, 2009, 34(3): 298-310
[18] Zhang Y, Heermann DW. DNA double-strand breaks: Linking gene expression to chromosome morphology and mobility[J]. Chromosoma, 2014, 123(1-2): 103-115
[19] Uhlmann F. SMC complexes: from DNA to chromosomes[J]. Nat Rev Mol Cell Biol, 2016, 17(7): 399-412
[20] Gelot C, Guirouilh-Barbat J, Le Guen T, et al. The cohesin complex prevents the end joining of distant DNA double-strand ends[J]. Mol Cell, 2016, 61(1): 15-26
[21] Altmeyer M, Neelsen KJ, Teloni F, et al. Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose)[J]. Nat Commun, 2015, 6: 8088
[22] Kruhlak MJ, Celeste A, Dellaire G, et al. Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks[J]. J Cell Biol, 2006, 172(6): 823-834
[23] Smeenk G, Wiegant WW, Marteijn JA, et al. Poly(ADP-ribosyl)ation links the chromatin remodeler SMARCA5/SNF2H to RNF168-dependent DNA damage signaling[J]. J Cell Sci, 2013, 126(4): 889-903
[24] Strickfaden H, McDonald D, Kruhlak MJ, et al. Poly(ADP-ribosyl)ation-dependent transient chromatin decondensation and histone displacement following laser microirradiation[J]. J Biol Chem, 2016, 291(4): 1789-1802
[25] Burgess RC, Burman B, Kruhlak MJ, et al. Activation of DNA damage response signaling by condensed chromatin[J]. Cell Rep, 2014, 9(5): 1703-1717
[26] Lemaître C, Soutoglou E. Double strand break (DSB) repair in heterochromatin and heterochromatin proteins in DSB repair[J]. DNA Repair(Amst), 2014, 19: 163-168
[27] Downs JA, Lowndes NF, Jackson SP. A role for Saccharomyces cerevisiae histone H2A in DNA repair[J]. Nature, 2000, 408(6815): 1001-1004
[28] Ziv Y, Bielopolski D, Galanty Y, et al. Chromatin relaxation in response to DNA double- strand breaks is modulated by a novel ATM-and KAP-1 dependent pathway[J]. Nat Cell Biol, 2006, 8(8): 870-876
[29] Lee HS, Park JH, Kim SJ, et al. A cooperative activation loop among SWI/SNF, gamma- H2AX and H3 acetylation for DNA double-strand break repair[J]. EMBO J, 2010, 29(8): 1434-1445
[30] Toiber D, Erdel F, Bouazoune K, et al. SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling[J]. Mol Cell, 2013, 51(4): 454-468
[31] Bennett G, Peterson CL. SWI/SNF recruitment to a DNA double-strand break by the NuA4 and Gcn5 histone acetyltransferases[J]. DNA Repair(Amst), 2015, 30: 38-45
[32] Schwertman P, Bekker-Jensen S, Mailand N. Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers[J]. Nat Rev Mol Cell Biol, 2016, 17(6): 379-394
[33] Li Z, Li Y, Tang M, et al. Destabilization of linker histone H1.2 is essential for ATM activation and DNA damage repair[J]. Cell Res, 2018, 28(7): 756-770
[34] Clouaire T, Rocher V, Lashgari A, et al. Comprehensive mapping of histone modifications at DNA double-strand breaks deciphers repair pathway chromatin signatures[J]. Mol Cell, 2018, 72(2): 250-262.e6
[35] Her J, Bunting SF. How cells ensure correct repair of DNA double-strand breaks[J]. J Biol Chem, 2018, 293(27): 10502-10511
[36] Ghezraoui H, Oliveira C, Becker JR, et al. 53BP1 cooperation with the REV7-shieldin complex underpins DNA structure-specific NHEJ[J]. Nature, 2018, 560(7716): 122-127
[37] Mirman Z, Lottersberger F, Takai H, et al. 53BP1-RIF1-shieldin counteracts DSB resection through CST- and Pol alpha-dependent fill-in[J]. Nature, 2018, 560(7716): 112-116
[38] Gupta R, Somyajit K, Narita T, et al. DNA repair network analysis reveals shieldin as a key regulator of NHEJ and PARP inhibitor sensitivity[J]. Cell, 2018, 173(4): 972-988
[39] Botuyan MV, Lee J, Ward IM, et al. Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair[J]. Cell, 2006, 127(7): 1361-1373
[40] Fradet-Turcotte A, Canny MD, Escribano-Diaz C, et al. 53BP1 is a reader of the DNA- damage-induced H2A Lys 15 ubiquitin mark[J]. Nature, 2013, 499(7456): 50-54
[41] Pellegrino S, Michelena J, Teloni F, et al. replication-coupled dilution of H4K20me2 guides 53BP1 to pre-replicative chromatin[J]. Cell Rep, 2017, 19(9): 1819-1831
[42] Acs K, Luijsterburg MS, Ackermann L, et al. The AAA-ATPase VCP/p97 promotes 53BP1 recruitment by removing L3MBTL1 from DNA double-strand breaks[J]. Nat Struct Mol Biol, 2011, 18(12): 1345-1350
[43] Mallette FA, Mattiroli F, Cui G, et al. RNF8-and RNF168-dependent degradation of KDM4A/JMJD2A triggers 53BP1 recruitment to DNA damage sites[J]. EMBO J, 2012, 31(8): 1865-1878
[44] Drane P, Brault ME, Cui G, et al. TIRR regulates 53BP1 by masking its histone methyl- lysine binding function[J]. Nature, 2017, 543(7644): 211-216
[45] Jacquet K, Fradet-Turcotte A, Avvakumov N, et al. The TIP60 complex regulates bivalent chromatin recognition by 53BP1 through direct H4K20me binding and H2AK15 acetylation[J]. Mol Cell, 2016, 62(3): 409-421
[46] Hu Q, Botuyan MV, Cui G, et al. Mechanisms of ubiquitin-nucleosome recognition and regulation of 53BP1 chromatin recruitment by RNF168/169 and RAD18[J]. Mol Cell, 2017, 66(4): 473-487
[47] Guo X, Bai Y, Zhao M, et al. Acetylation of 53BP1 dictates the DNA double strand break repair pathway[J]. Nucleic Acids Res, 2018, 46(2): 689-703
[48] Lee DH, Acharya SS, Kwon M, et al. Dephosphorylation enables the recruitment of 53BP1 to double-strand DNA breaks[J]. Mol Cell, 2014, 54(3): 512-525
[49] Aymard F, Bugler B, Schmidt CK, et al. Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks[J]. Nat Struct Mol Biol, 2014, 21(4): 366-374
[50] Carvalho S, Vitor AC, Sridhara SC, et al. SETD2 is required for DNA double-strand break repair and activation of the p53-mediated checkpoint[J]. Elife, 2014, 3: e02482
[51] Daugaard M, Baude A, Fugger K, et al. LEDGF (p75) promotes DNA-end resection and homologous recombination[J]. Nat Struct Mol Biol, 2012, 19(8): 803-810
[52] Lord CJ, Ashworth A. PARP inhibitors: Synthetic lethality in the clinic[J]. Science, 2017, 355(6330): 1152-1158
[53] Seeber A, Gasser SM. Chromatin organization and dynamics in double-strand break repair[J]. Curr Opin Genet Dev, 2017, 43: 9-16
[54] Price BD, D'Andrea AD. Chromatin remodeling at DNA double-strand breaks[J]. Cell, 2013, 152(6): 1344-1354
[55] Weber AM, Ryan AJ. ATM and ATR as therapeutic targets in cancer[J]. Pharmacol Ther, 2015, 149: 124-138
[56] Helleday T. The underlying mechanism for the PARP and BRCA synthetic lethality: Clearing up the misunderstandings[J]. Mol Oncol, 2011, 5(4): 387-393
[57] Bryant HE, Schultz N, Thomas HD, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase[J]. Nature, 2005, 434(7035): 913-917
[58] Ceccaldi R, Rondinelli B, D'Andrea AD. Repair pathway choices and consequences at the double-strand break[J]. Trends Cell Biol, 2016, 26(1): 52-64
[59] Ceccaldi R, Liu JC, Amunugama R, et al. Homologous-recombination-deficient tumours are dependent on Pol theta-mediated repair[J]. Nature, 2015, 518(7538): 258-262
[60] Ying S, Hamdy FC, Helleday T. Mre11-Dependent degradation of stalled DNA replication forks is prevented by BRCA2 and PARP1[J]. Cancer Res, 2012, 72(11): 2814-2821
[61] Schlacher K, Christ N, Siaud N, et al. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11[J]. Cell, 2011, 145(4): 529-542
[62] Williamson CT, Miller R, Pemberton HN, et al. ATR inhibitors as a synthetic lethal therapy for tumours deficient in ARID1A[J]. Nat Commun, 2016, 7: 13837
[63] Shen J, Peng Y, Wei L, et al. ARID1A deficiency impairs the DNA damage checkpoint and sensitizes cells to PARP inhibitors[J]. Cancer Discov, 2015, 5(7): 752-767
[64] Li X, Baek G, Ramanand SG, et al. BRD4 promotes DNA repair and mediates the formation of TMPRSS2-ERG gene rearrangements in prostate cancer[J]. Cell Rep, 2018, 22(3): 796-808
[65] Su D, Ma S, Shan L, et al. Ubiquitin-specific protease 7 sustains DNA damage response and promotes cervical carcinogenesis[J]. J Clin Invest, 2018, 128(10): 4280-4296
[66] Zhao Y, Garcia BA. Comprehensive catalog of currently documented histone modifications [J]. Cold Spring Harb Perspect Biol, 2015, 7(9): a025064
网址:表观遗传调控:基于染色质环境的DNA双链断裂修复 https://www.yuejiaxmz.com/news/view/448291
相关内容
环境因素与基因调控.pptx肺炎双球菌的转化实验证明了DNA是遗传物质,而蛋白质等不是遗传物质。DNA分子具有很强的稳定性,能耐较高的温度,那么DNA分子能不能耐酸(如pH=3)呢?请设计
环境影响基因表达
通过饮食和生活方式改变表观遗传年龄,逆转衰老
遗传算法详解(GA)(个人觉得很形象,很适合初学者)
基因与生活学习通课后章节答案期末考试题库2023年.docx
《Cancer Cell》:生信分析与CRISPR基因编辑技术的巧妙结合(IF=31.7)
胚胎染色体异常怎么备孕好
中国科学院机构知识库网格系统: 红色夜光藻(red Noctiluca)繁殖方式的环境调控机理研究
斑马鱼实验:良好的睡眠能修复神经元DNA损伤