大学生网络购物相关因素的分析研究
善于利用网络资源进行研究 #生活技巧# #学习技巧# #学术研究方法#
大学生网络购物相关因素的分析研究
Analysis and Research on Related Factors of College Students’ Online Shopping
1. 引言
随着互联网的发展与手机普及率的上升,网络购物作为一种新兴的购物方式,已经极大地影响着人们的生活方式,成为了人们生活不可分割的一部分,由于网络购物极大地方便了我们的生活,所以近些年来网民的规模持续扩大,网购群体不断壮大,尤其是对于知识结构完整的大学生群体。
据中国互联网信息中心(CNNIC)发布的第43次《中国互联网络发展状况统计报告》中的数据显示:截至2018年12月,我国网络购物用户规模达6.10亿,较2017年底增长14.4%,占网民整体比例达73.6%。手机网络购物用户规模达5.92亿,较2017年底增长17.1%,使用比例达72.5%。由此可见互联网发展的迅速,移动端购物的兴起,大大的改变着我们的生活方式(如图1)。
Figure 1. China mobile internet users and the proportion of internet users
图1. 2017.12~2018.12网络购物/手机网络购物用户规模及使用率
2018年,商品交易类应用持续高速增长,网络购物用户规模高速增长,可见电子商务的持续发展大大地影响着网民的生活(如图2,摘自第43次《中国互联网发展状况统计报告》)。在中国众多网民中,10~39岁的网民占比最高,占整体的67.8%,其中20~29岁的网民占比最高,达26.8%;在校大学生正处于这个年龄阶段。从职业的角度来看:学生所占比例为25.4%,处于第一位。因此,可以很明显看出大学生正是网上购物的最主要的力量。大学生的消费方式受到自身的一些特点影响,因此研究大学生网络购物的相关因素就非常有意义。
Figure 2. Age structure of Chinese netizens
图2. 中国网民年龄结构
2. 研究内容及研究方法、研究对象
2.1. 研究内容
本文的主要研究内容:
1) 分析大学生的专业、年级、生源地与网络购物之间的相关关系,研究学习成绩与网络购物之间的关系。
2) 从大学生个人特征、学习成绩、环境因素这三个方面下的具体因素对大学生网络购物频率的影响。本文通过典型相关分析研究学习成绩和网络购物之间的关系。
2.2. 研究方法
通过阅读大量的文献,初步确定了大学生网络购物的影响因素,最终设计了《大学生网络购物相关因素调查问卷》,通过微信、qq空间等网络平台进行发放,客观科学的收集了大学生网络购物的相关因素指标。
本文主要用SPSS20.0和SAS软件对有效的数据进行处理。
2.3. 研究对象
这次调查选取的是天津工业大学在校大学生,通过发放调查问卷的形式,收集大学生网络购物行为的因素指标,寻找出相关的影响因素。
3. 大学生网络购物行为的相关研究
通过对相关文献的查阅发现,针对大学生网络购物的相关研究的方向主要偏向于网络购物信任影响因素以及大学生网络购物行为和满意度的影响因素的研究。查金祥(2006)等基于预期不确认理论和服务质量衡量理论,建立了一个购物网站服务质量、顾客期望与网络顾客满意度之间关系的结构模型,研究了网站的各方面因素是否会对顾客的满意度产生影响 [1] 。大多是从经销商的角度去研究消费者的行为:Seock Y (2008)等调查了大学生的购物取向,并检查了他们的购物方向之间的关系,搜索了在线服装产品的信息和购买以及男女学生之间的差异,结果显示,参与者的购物方向与他们在线搜索服装项目信息和购买服务项目显着相关。此外,男性和女性参与者在购物方向,在线信息搜索和购买体验方面表现出显著差异,从而为经销商做出营销策略提供了建议 [2] 。Jadhav V等(2016)考虑到大学生网络使用和网上购物的增加,本次定性研究的目的是探讨影响孟买文学评论中大学生网上购买行为的因素 [3] 。张婷婷(2016)研究商家如何获得消费者的信任,消费者对商家的信任被什么因素所影响,从而以大学生为研究对象,通过问卷调查和统计分析方法对大学生网络购物信任影响因素进行探索 [4] ;冯亮(2017)等对有网购经历的567位在校大学生的实证调查,从网购经历时限、网购产生原因、网购渠道与频率等九个方面对大学生网购的特征展开分析 [5] 。王思雨、杨颜羽等研究了大学生网络购物动机以及影响因素,从而为实体零售提出了建设性的意见 [6] ;冯燕(2011)运用SPSS软件分析了网络口碑的效价、数量、内容质量和视觉线索与网络行为之间的关键影响因素,分析出大学生的感知有用对网购意向的作用更大,并且为商家提出了建议 [7] ;陈广明(2014)调查研究了大学生网购消费群体在网购的时候满意度的影响因素,应用了CSD加权平均法,构建了数学模型,并为网商在提升消费者的满意度方面提供了策略支持 [8] ;也有学者逐渐从大学生的角度进行研究,从而为大学生网络购物做出引导:郑梅钦(2013)通过研究大学生网购时间、目的、心理及行为而判断大学生是否网购成瘾,分析大学生网购成瘾因素,总结出成瘾的过程,最后给出了应对策略 [9] 。陈治(2013)等通过问卷调查,获得了大学生网购三大影响因素(网络购物特点、商品因素、个人情感因素)的数据信息,利用层次分析法、Logistic回归模型、方差分析等方法结合所调查样本特征变量对大学生网购冲动行为的影响因素进行研究,结论表明,商品因素及浏览网络时间会显著影响大学生网购冲动行为。从而建议大学生应进行自我控制,适量适时进行网络购物 [10] 。
4. 大学生网络购物相关因素的调查方案与数据搜集
4.1. 大学生网络购物相关因素的设定
4.1.1. 个人特征因素
阅读大量的文献,研究大学生网络购物的相关因素,总结出大学生的个人基本特征包括大学生的年级、专业、生源地、月生活费以及大学生在学校的任职情况。
4.1.2. 网络购物特征因素
在大量的文献中可以找到研究大学生的网络购物时大都是通过研究大学生网络购物的频率、网购年限、网购理由、资金来源等因素综合分析大学生的偏好和选择。本文主要是探讨大学生的网络购物的频率,浏览网站的频率以及网络购物的时间段等与大学生的成绩方面的因素的相关关系。
4.1.3. 学习成绩因素
针对学习成绩因素的选取,我查找了大量的文献,主要是确定能够评估学习成绩的因素,鉴于学生对于各科成绩的具体分数应该无法准确记忆,所以选择了专业排名,能够准确的反映综合成绩,同时通过调查四六级的通过率来评估学习成绩,后期通过相关分析来检验这些因素是否相关。
4.2. 调查问卷设计
4.2.1. 调查问卷的结构设计
调查问卷是研究群体行为的一个有力的工具,通过对定性问题的转述,进行大量相关问题的收集,然后进行量化,可以达到定量研究的目的。本文在前人研究的基础上,设计了一套全新的调查问卷。本次调查问卷主要从大学生个人情况、网购特征、学习成绩三个方面进行调查。
1) 大学生的基本情况。个人情况中包括的指标有年级、专业、性别、任职情况、家庭背景、生源地、月生活费;
2) 网购特征主要从网购时段、平均每个月网购次数、网购年限、单次交易额等指标进行调查;
3) 学习成绩主要从专业排名、四六级成绩、平均每天的学习、自习时间等进行调查。
4.2.2. 问卷量表
本文结合国内相关文献中的相同变量或相关变量的测量量表,如表1,设计出了本次调查研究问卷调查量表,共有3个变量涉及24个问题。
研究变量
变量测量
参考文献
大学生自身
人口统计因素
您的性别
Pereay [11] ;
尹世久 [11] 等
您的年级
您的专业
您的每月生活支出
其他因素
您的生源地
自增
您的任职情况
自增
网上购物特征
您的网购时段
魏源 [12]
您平均每个月网上购物的次数
您的网购年限
您的平均单次交易额
网络购物特征
您的网购理由
自增
您的主要网购渠道
您平时购买商品最多的是
您的资金主要来源
您网购问题中的处理方式
成绩
学习因素
您的专业排名
自增
您的四六级成绩
您平均每天自习的时间
您的上课出勤率
您平均每天的课程
其他因素
您的兼职和社团活动时间
自增
您的其他上网时间
Table 1. Questionnaire scale
表1. 问卷量表
5. 调查研究结果与分析
5.1. 数据对象描述
为了了解大学生网络购物的相关影响因素,在本次关于大学生网络购物相关因素的调查问卷中,我们共投放600份调查问卷,回收564份,有效问卷550份,无效问卷14份。进行简单的数据统计描述(如表2):
个人特征
选择项
比例
年级
大一
16.76%
大二
9.25%
大三
28.32%
大四
43.35%
本科以上
2.31%
性别
男
47.98%
女
52.02%
专业
经济管理类
12.72%
理工类
73.99%
文法哲学类
9.83%
文艺体育类
3.47%
生源地
沿海地区
25.43%
中部地区
36.99%
西部地区
28.90%
东北地区
8.67%
平均每个月的生活费
600元及以下
2.89%
600~1200元
45.66%
1200~2000元
41.04%
2000元及以上
10.40%
家庭背景
农村
49.71%
县域
17.92%
城市
32.37%
任职情况
校级学生干部
5.20%
院级学生干部
17.34%
班干部
38.15%
无
50.29%
Table 2. Data description
表2. 数据描述
5.2. 聚类分析
通过对问卷中所选变量进行简单的聚类,采用的是类平均法进行聚类分析,大致可以描述出哪几个变量之间的距离较近。
从图3我们可以看出所选择的变量大致可以分为三类,其中aa10 (四级成绩),aa11 (六级成绩)分为一类;aa2 (专业)、aa3 (生源地)、aa14 (兼职时间)大致分为一类;aa7 (网购年限)、aa5 (网购时间段)、aa13 (课程量)、aa12 (自习时间)大致分为一类。可以看出这些变量在某种程度上比较相近。
Figure 3. Spectral clustering diagram of the class average method
图3. 类平均法的谱系聚类图
5.3. R型因子分析
为了研究变量之间的潜在关系,进行对变量的R型因子分析,从而找出因子之间的潜在因子情况 [13] 。
在10个变量的情况下,选取的公共因子的数目是6个,如表3,前六个变量的累计贡献率是78%,达到75%以上,可以解释出原始变量的大部分信息。
factor
Eigenvalue
Difference
Proportion
Cumulative
1
1.90396209
0.05495213
0.1904
0.1904
2
1.84900990
0.64440566
0.1843
0.3753
3
1.20460424
0.13035898
0.1205
0.4958
4
1.07424526
0.12941853
0.1074
0.6032
5
0.94482673
0.09425749
0.0945
0.6977
6
0.85056924
0.12825665
0.0851
0.7827
7
0.72231259
0.04160328
0.0722
0.8550
8
0.68070931
0.16086803
0.0681
0.9230
9
0.51984129
0.26992194
0.0520
0.9750
10
0.24991935
0.0250
1.0000
Table 3. Cumulative contribution rate of factor analysis
表3. 因子分析的累计贡献率
输出表4的因子载荷矩阵中,我们可以看出FACTOR1对应的列(第一个公共因子的载荷向量),aa10和aa11较大,这就表示可以用aa10 (四级成绩)和aa11 (六级成绩)来表示FACTOR1,所以我们可以叫FACTOR1为成绩因子;同样的分析FACTOR2,可以找出aa5 (月生活费)和aa7 (网购年限)所占的比例最大,所以由aa5和aa7就可以解释公共因子2,我们可以叫公共因子2为个人因子;对于FACTOR3可以看出aa6 (网购次数)和aa8 (单次交易额)所占的比重大,所以有aa6和aa8可以充分地解释出公共因子3的信息,所以我们可以把公共因子3叫做网购因子;同时可以看出FACTOR4的aa9 (专业成绩排名)和aa12 (自习时间)的比重大,也可以把公共因子4叫做成绩因子;FACTOR5主要由aa14 (兼职时间)解释,可以叫做个人因子;FACTOR6主要由aa13 (课程量)解释,我们可以叫做成绩因子;所以在因子分析中大致的可以看出我们选取的变量分为个人因子、网购因子、成绩因子。
Rotated Factor Pattern
Factor1
Factor2
Factor3
Factor4
Factor5
Factor6
aa5
0.26867
0.63848
0.08812
0.09746
0.27003
0.01890
aa6
0.04277
0.48744
0.64552
0.23037
−0.00988
−0.03029
aa7
−0.13857
0.80287
0.04267
0.09200
−0.14248
−11452
aa8
−0.04320
−0.03012
0.908790
0.03320
0.16815
0.05108
aa9
−0.16746
0.14606
0.0294
0.82901
0.16074
0.19953
aa10
0.86505
0.13167
−0.12574
−0.13120
0.10600
−0.02737
aa11
0.91741
−0.07736
0.09437
−0.05531
−0.06689
0.08133
aa12
0.04083
0.33655
−0.16574
−0.62970
0.26389
0.39431
aa13
0.04416
−0.11485
0.05067
0.06483
−0.14204
0.90293
aa14
0.01981
0.01065
0.15362
0.03837
0.91184
-0.12806
Table 4. Factor load matrix
表4. 因子载荷矩阵
如表5可以看到6个公共因子分别对所有变量解释的方差,可以看出FACTOR1、FACTOR2、FACTOR3对变量的影响最大;如表6共同度,解释了全部公共因子对变量所做出的贡献,也就是变量对公共因子的依赖程度,可以看出aa11 (六级成绩)和aa14 (兼职时间)对公共因子的影响很大。
Variance Explained by Each Factor
Factor1
Factor2
Factor3
Factor4
Factor5
Factor6
1.7170948
1.4619807
1.3305381
1.1818613
1.0844017
1.0513409
Table 5. Variance contribution of each common factor interpretation
表5. 每个公共因子解释的方差贡献
Final Commonality Estimates Total = 7.827217
aa5
aa6
aa7
aa8
aa9
0.57037969
0.71020074
0.70749578
0.86066359
0.80228679
aa10
aa11
aa12
aa13
aa14
0.81066497
0.87068042
0.76404158
0.85737601
0.87342790
Table 6. Commonality
表6. 共同度
如表7标准化以后的因子载荷矩阵,所得出的结论和表4一样。可以看出因子分析对所选取的变量进行了潜在关系的分析,找到了其中的共同的因子,为我们对变量的关系之间的分析提供了更加有力的佐证。
Standardized Scoring Coefficients
Factor1
Factor2
Factor3
Factor4
Factor5
Factor6
aa5
0.13662
0.42048
−0.08067
0.13350
0.17453
0.04370
aa6
0.04301
0.26534
043339
0.11645
−0.16120
−0.02877
aa7
−0.11404
0.59518
−0.04422
−0.08967
−0.22931
−0.09281
aa8
−0.04250
−0.17366
0.75193
−0.19811
0.03616
0.04482
aa9
−0.01175
0.12805
−0.19675
0.74442
0.17625
0.22935
aa10
0.50262
0.06655
−0.11762
0.02935
0.05404
−0.06041
aa11
0.55853
−0.09885
0.11067
0.06078
−0.12319
0.01751
aa12
−0.11543
0.23582
−0.12704
−0.52516
0.27720
0.40504
aa13
−0.00008
−0.05059
0.05126
0.06346
−0.06492
0.85290
aa14
−0.03197
−0.11030
−0.01576
0.01594
0.86403
−0.05251
Table 7. Standardized factor load matrix
表7. 标准化的因子载荷矩阵
5.4. 大学生网络购物相关因素之间的典型相关分析
位于输出的表8中间的表格给出的检验假设 H(i)0 : λi=0(i=1,2) 的结果。有该表格中“1”所在的这一行,可得到似然比的值为0.107,近似F统计量为2.85,显著性概率(P值)为0.0029 (即表格中最右列Pr > F的值),故在 ∂=0.01 的显著性水平下,否定所有典型相关为0的假设,也就是至少有一个典型相关变量是显著的。由“2”所在的一行,得到的结果说明第二个典型相关是不显著的( P=0.0925>∂ )。以及第三个典型相关也是不显著的( P=0.2368>∂ )。因此两组变量相关性的研究可转化为研究第一对典型相关变量的相关性 [14] 。
Like l i hood Approximate
Eigenvalue
Difference
Proportion
Cumulative
Ratio
F value
Num DF
Den DF
Pr > F
0.1070
0.0672
0.6898
0.6898
0.8616
2.85
9
406.58
0.0029
0.0398
0.0314
0.2564
0.9462
0.9538
2.01
4
336
0.0925
0.0083
0.0538
1.0000
0.9917
1.41
1
169
0.2368
Table 8. Typical correlation coefficient and significance test
表8. 典型相关系数及显著性检验
如表9给出了原始变量和典型变量之间的相关系数阵。因为6个变量没有使用相同的单位进行测量,所以我们来分析标准化以后的系数(见表10)。来自网购指标的第一典型变量V1为:
V1=0.3998X1−0.7388X2+0.6582X3
它近似地是X2 (网购年限)和X3 (单次交易额)的加权差,在X2上的权重更大些。来自成绩指标的W1为:
W1=0.2921y1−0.9091y2+1.2873y3
它在y3 (六级成绩)和y2 (四级成绩)上的系数最大,这一对典型变量主要反应的是X2 (网购年限)和y3 (六级成绩)的负相关关系。
The CANCORR Procedure
Canonical Correlation Analysis
Row Canonical Coefficients for the VAR Variables
V1
V2
V3
X1
0.2837716595
0.6582530972
0.1622488568
X2
−1.38000435
−0.247214517
1.32147126
X3
0.0047045912
−0.003739666
0.003940994
Raw Canonical Coefficients for the WITH Variables
W1
W2
W3
Y1
1.6040829348
0.0795257944
5.3547776036
Y2
−0.019885438
0.0195527986
0.0082261195
Y3
0.0242256931
0.0029198999
−0.005400405
Table 9. Correlation coefficient matrix of original variables and typical variables
表9. 原始变量和典型变量的相关系数阵
The CANCORR Procedure
Canonical Correlation Analysis
Standardized Canonical Coefficients for the VAR Variables
V1
V2
V3
X1
0.3998
0.3274
0.2286
X2
−0.7388
−0.1323
0.7074
X3
0.6582
−0.5232
0.5514
Standardized Canonical Coefficients for the WITH Variables
W1
W2
W3
Y1
0.2921
0.0145
0.9750
Y2
−0.9091
0.8939
0.3761
Y3
0.6582
0.1552
−0.2870
Table 10. Correlation coefficient matrix after normalization
表10. 标准化以后的相关系数阵
根据上面分析,单次交易额和网购次数和四级成绩呈现负相关关系,但是和六级成绩呈现正相关关系,这种情况的出现可能和年级有关,随着年级的增高,六级的通过率也会增高。所以在后期的论文完善中可以分年级对这些因素做典型相关分析。
6. 结论与对策建议
6.1. 结论
6.1.1. 大学生自身因素与网络购物
大学生自身的背景因素和大学生的网络购物情况有一定的相关关系。其中个人特征的生源地、专业、年级被证实和网络购物的单次交易额、网购时间段、平均每月的网购次数之间存在着相关关系:大学生的生源地与网购的单次交易额之间存在着相关关系,沿海地区的学生比起东北地区的学生的单次交易额会更高一点,这和沿海地区的经济发展比较相关;大学生的专业不同,所集中的网购时间段也不同,其中理工科的学生大多集中在晚上的时间段;大学生的年级不同,平均每个月的网购次数也会不一样,这可能和大学生刚进入大学时刚接触网络购物,对学校以及周围的同学都不是很熟悉,所以在网络购物的方面就会相对关注较少,随着年级的增加,有越来越多的需求,同时越来越注意自己的形象,相对的课程量也在慢慢减少,自己也能很好地应对学习问题,所以网购的次数也会相对的增多。
6.1.2. 大学生网购因素与成绩因素
探讨了大学生的网购因素和学习成绩因素之间关系,用典型相关分析证实了网购年限和网购次数越高的学生,对成绩会产生负面影响。分析出网购次数、网购年限、单次交易额和专业成绩、四级成绩、六级成绩之间具有相关性。
6.2. 对策建议
大学生应该理性购物,合理安排网络购物时间;学校应该丰富校园活动,开展适量的自习时间,对学生的学习时间安排进行一定的指导;网络零售商在营销的过程应该规范自己,不要用各种营销手段蛊惑大学生群体。
致谢
感谢我的老师和同学在整篇论文写作过程中对我的帮助,感谢同学帮助我转发问卷,收集数据。
附录
调查问卷
1.您的性别?
A.男B.女
2.您的就读阶段?
A.大一 B.大二C.大三D.大四 E.本科以上
3.您的专业?
A.经济管理类 B.理工类 C.文法哲学类 D.文艺体育类
4.任职情况(多选)
A.无B.班干部C.院级学生干部D.校级学生干部
5.您的家庭背景是?
A.农村 B.县域 C.城市
6.个人月生活费?
A.500元以下 B.500~1000元 C.1000~1500元 D.1500~2000元 E.2000~3000元 F.3000元以上
7.您什么情况下会浏览购物网站?(多选)
A.有购物需要的时候B.没有事情干,无聊的时候 C.购物网站有优惠的时候 D.受到周围人的影响 E.实体店价格昂贵
8.您的网购时段?
A.8~12点 B.12~14点 C.14~18点 D.18~24点
9.您平均每天浏览购物网站的时间是多少?
A.1小时以内 B.1~2小时C.2~3小时 D.3~5小时 E.5小时以上
10.您平均每月网上购物的次数?
A.一次及一次以下 B.2~3次C.3~4次 D.4次及4次以上
11.您开始使用网络购物多少年了?
A.1年左右 B.1~3年 C.3~5年 D.5年以上
12.您的网购理由?(多选)
A.价格便宜,节省时间 B.质量好 C.流行时尚 D.种类丰富 E.快捷方便
13.您的单次交易额?
A.200元以下 B.201~500元C.500元以上
14.您的主要网购渠道?(多选)
A.淘宝 B.京东 C.当当 D.聚美 E.蘑菇街
15.您平时购买商品最多的是?(多选)
A.服装饰品 B.书刊 C.电子产品 D.化妆品 E.食物 F.其他
16.您的资金来源?
A.父母家庭B.兼职打工 C.奖学金、助学金
17.您的平均每天自习/学习时间?
A.一小时及以下B.1~1.5小时C.1.5~2小时 D.2~2.5小时 E.2.5~3小时 F.3小时以上
18.您的四级成绩(填空题)
19.您的六级成绩(填空题)
20.您的专业排名(填空题)
21.您平均每天除了网络购物的其他上网的时间?
A.3小时及以下 B.3~4.5小时 C.4.5~6小时 D.6小时
22.您的平均每天的课程?
A.2节以下 B.2~3节 C.3节以上
23.平均一个月开展校园社团或讲座等活动?
A.2次及2次以下B.2~4次C.4次以上
网址:大学生网络购物相关因素的分析研究 https://www.yuejiaxmz.com/news/view/529826
相关内容
影响绿色食品消费因素分析研究自闭症儿童照顾者健康相关生活质量影响因素分析及对策研究
短视频对大学生生活影响的大数据分析与研究
大学生理财现状及影响因素研究
研究生睡眠质量影响因素研究
大学生网购调查问卷分析报告(12篇)
计算机网络安全问题分析与防护措施研究
网络购物平台国内外研究现状和参考文献
多举齐下,提高大学生网络防骗意识和能力——大学生网络购物受骗案例分析
大学生网购现状和教育对策分析.doc