pytorch 设置变量的device=‘cpu’ or ‘cuda‘

发布时间:2024-12-22 10:09

游戏设备性能设置: 降低图形质量可以减少CPU和GPU负载。 #生活技巧# #数码产品使用技巧# #游戏设备优化设置#

背景

在电脑上运行深度学习模型,需要设置设备在cup还是GPU上运行,GPU运行速度是显著高于CPU的,但对于在不同设备上保存的变量在运行时很容易发生错误。因此需要注意

例子

from sklearn.metrics import f1_score import torch import torch.nn as nn from torch.nn import Module import torch.nn.functional as F import math import torch.optim as optim import numpy as np class GraphConvolution(Module): """ A Graph Convolution Layer (GCN) """ def __init__(self, in_features, out_features, bias=True): super(GraphConvolution, self).__init__() self.in_features = in_features self.out_features = out_features self.W = nn.Linear(in_features, out_features, bias=bias) self.tGraphConvolution = torch.randn(2,3) self.init() def init(self): stdv = 1. / math.sqrt(self.W.weight.size(1)) self.W.weight.data.uniform_(-stdv, stdv) def forward(self, input, adj): support = self.W(input) # XW output = torch.spmm(adj, support) # AXW return output class GCN(nn.Module): """ A Two-layer GCN. """ def __init__(self, nfeat, nhid, nclass, dropout, degree): super(GCN, self).__init__() self.gc1 = GraphConvolution(nfeat, nhid) self.gc2 = GraphConvolution(nhid, nclass) self.dropout = dropout self.degree = degree # self.alpha = torch.ones(self.degree, 1, requires_grad=True) self.alpha = nn.Embedding(self.degree, 1) # self.alpha.weight.data[0][0] 取出第一个元素 self.tGCN = torch.randn(2,3) def forward(self, x, adj, use_relu=True): x = self.gc1(x, adj) if use_relu: x = F.relu(x) x = F.dropout(x, self.dropout, training=self.training) x = self.gc2(x, adj) return x model = GCN(8,8,128,0.2,2) model = model.cuda() # 作用相同 # device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # model.to(device) print("over")

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960

程序在自己的笔记本上运行,有一块cpu,有gpu,运行到model = model.cuda()语句前,模型的所有变量都默认保存在cpu当中,model = model.cuda()运行之后,像

self.gc1 self.W self.alpha 123

都由原来的cpu设备转移到gpu了,但是对于自定义的

self.tGCN = torch.randn(2,3) self.tGraphConvolution = torch.randn(2,3) 12

仍保留在cpu设备上。

不同类型的tensor相加

torch.tensor(0., device='cpu')+torch.tensor(0., device='cuda')cpu torch.tensor(0., device='cuda')+torch.tensor(0., device='cuda')cuda torch.tensor(0., device='cpu')+torch.tensor(0., device='cpu')cpu 123

设置所有的tensor为cuda类型

torch.set_default_tensor_type('torch.cuda.FloatTensor') 1

加上该语句即使没有model = model.cuda(),

self.gc1 self.W self.alpha 和 self.tGCN = torch.randn(2,3) self.tGraphConvolution = torch.randn(2,3) 123456

都会保存到cuda设备上

网址:pytorch 设置变量的device=‘cpu’ or ‘cuda‘ https://www.yuejiaxmz.com/news/view/538367

相关内容

pytorch中的model=model.to(device)使用说明
CUDA:(一) 基本设备管理函数、向量相加
GPU加速深度学习
pytorch 1.1.0升级
CUDA进阶第八篇
安装pytorch1.0
把显存用在刀刃上!17 种 pytorch 节约显存技巧
PyTorch 节省显存的策略总结
Windows10 通过conda安装PyTorch(流程记录)
PyTorch 深度学习框架简介:灵活、高效的 AI 开发工具

随便看看