§1.4.1生活中的优化问题举例(1)
如何在品质生活论坛上提问:优雅且有效的问题示例 #生活乐趣# #生活分享# #品质生活点滴# #生活品质论坛#
§1.4.1生活中的优化问题举例(1)。
一位优秀的教师不打无准备之仗,会提前做好准备,教师在教学前就要准备好教案,做好充分的准备。教案可以让学生们能够更好的找到学习的乐趣,让教师能够快速的解决各种教学问题。那么如何写好我们的教案呢?急您所急,小编为朋友们了收集和编辑了“§1.4.1生活中的优化问题举例(1)”,希望能为您提供更多的参考。
§1.4.1生活中的优化问题举例(1)
【学情分析】:
导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面:
1、与几何有关的最值问题;2、与物理学有关的最值问题;3、与利润及其成本有关的最值问题;4、效率最值问题。
【教学目标】:
1.掌握利用导数求函数最值的基本方法。
2.提高将实际问题转化为数学问题的能力.提高学生综合、灵活运用导数的知识解决生活中问题的能力
3.体会导数在解决实际问题中的作用.
【教学重点】:
利用导数解决生活中的一些优化问题.
【教学难点】:
将生活中的问题转化为用函数表示的数学问题,再用导数解决数学问题,从而得出问题的最优化选择。
【教学突破点】:
利用导数解决优化问题的基本思路:
【教法、学法设计】:
【教学过程设计】:
教学环节教学活动设计意图
(1)复习引入:提问用导数法求函数最值的基本步骤学生回答:导数法求函数最值的基本步骤为课题作铺垫.
(2)典型例题讲解例1、把边长为cm的正方形纸板的四个角剪去四个相等的小正方形(如图示),折成一个无盖的盒子,问怎样做才能使盒子的容积最大?
解设剪去的小方形的边长为,则盒子的为
,
求导数,得
,
选择一个学生感觉不是很难的题目作为例题,
令得或,其中不合题意,故在区间内只有一个根:,
显然,
因此,当四角剪去边长为cm的小正方形时,做成的纸盒的容积最大.让学生自己体验一下应用题中最优化化问题的解法。
(3)利用导数解决优化问题的基本思路:1、生活中的优化问题转化为数学问题
2、立数学模型(勿忘确定函数定义域)
3、利用导数法讨论函数最值问题使学生对该问题的解题思路清析化。
(4)加强巩固1例2、铁路AB段长100千米,工厂C到铁路的距离AC为20千米,现要在AB上找一点D修一条公路CD,已知铁路与公路每吨千米的运费之比为3:5,问D选在何处原料从B运到C的运费最省?
解:设AD的长度为x千米,建立运费y与AD的长度x之间的函数关系式,则
CD=,BD=100-x,公路运费5k元/Tkm,铁路运费3k元/Tkm
y=,
求出f(x)=,
令f’(x)=0,得3600+9x2=25x2
解得x1=15,x2=-15(舍去),
∵y(15)=330k
y(0)=400k,y(100)≈510k
∴原料中转站D距A点15千米时总运费最省。使学生能熟练步骤.
(5)加强巩固2例3、某制造商制造并出售球型瓶装的某种饮料.瓶子的制造成本是分,其中是瓶子的半径,单位是厘米。已知每出售1mL的饮料,制造商可获利0.2分,且制造商能制作的瓶子的最大半径为6cm
问题:(1)瓶子的半径多大时,能使每瓶饮料的利润最大?
(2)瓶子的半径多大时,每瓶的利润最小?
解:由于瓶子的半径为,所以每瓶饮料的利润是
令解得(舍去)
当时,;当时,.
当半径时,它表示单调递增,即半径越大,利润越高;
当半径时,它表示单调递减,即半径越大,利润越低.
(1)半径为cm时,利润最小,这时,表示此种瓶内饮料的利润还不够瓶子的成本,此时利润是负值.
(2)半径为cm时,利润最大.
换一个角度:如果我们不用导数工具,直接从函数的图像上观察,会有什么发现?
有图像知:当时,,即瓶子的半径为3cm时,饮料的利润与饮料瓶的成本恰好相等;当时,利润才为正值.
当时,,为减函数,其实际意义为:瓶子的半径小于2cm时,瓶子的半径越大,利润越小,半径为cm时,利润最小.
提高提高问题的综合性,锻炼学生能力。
(6)课堂小结1、建立数学模型(确立目标函数)是解决应用性性问题的关键
2、要注意不能漏掉函数的定义域
3、注意解题步骤的规范性
(7)作业布置:教科书P104A组1,2,3。
(8备用题目:
1、要做一个圆锥形漏斗,其母线长为,要使其体积最大,则其高为(A)
ABCD
2、设正四棱柱体积为V,那么其表面积最小时,底面边长为(A)
ABCD
3、设8分成两个数,使其平方和最小,则这两个数为4。
4、用长度为的铁丝围成长方形,则围成的最大面积是4。
5、某厂生产产品固定成本为500元,每生产一单位产品增加成本10元。已知需求函数为:,问:产量为多少时,利润最大?最大利润是多少?
解:先求出利润函数的表达式:
再求导函数:
求得极值点:q=80。只有一个极值点,就是最值点。
故得:q=80时,利润最大。最大利润是:
注意:还可以计算出此时的价格:p=30元。
6、用长为90cm,宽为48cm的长方形铁皮做一个无盖的容器.先在四角分别截去一个小正方形.然后把四边翻转90度角,再焊接而成(如图).问容器的高为多少时,容器的容积最大?最大容积是多少?
解:设容器高为xcm,容器的体积为V(x),则
精选阅读
生活中的优化问题举例
一名优秀负责的教师就要对每一位学生尽职尽责,准备好一份优秀的教案往往是必不可少的。教案可以让学生能够在教学期间跟着互动起来,有效的提高课堂的教学效率。我们要如何写好一份值得称赞的高中教案呢?以下是小编为大家收集的“生活中的优化问题举例”相信您能找到对自己有用的内容。
§3.4生活中的优化问题举例
教学目标:
1.要细致分析实际问题中各个量之间的关系,正确设定所求最大值或最小值的变量与自变量,把实际问题转化为数学问题,即列出函数解析式,根据实际问题确定函数的定义域;
2.要熟练掌握应用导数法求函数最值的步骤,细心运算,正确合理地做答.
重点:求实际问题的最值时,一定要从问题的实际意义去考察,不符合实际意义的理论值应予舍去。
难点:在实际问题中,有常常仅解到一个根,若能判断函数的最大(小)值在的变化区间内部得到,则这个根处的函数值就是所求的最大(小)值。
教学方法:尝试性教学
教学过程:
前置测评:
(1)求曲线y=x2+2在点P(1,3)处的切线方程.
(2)若曲线y=x3上某点切线的斜率为3,求此点的坐标。
【情景引入】生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节,我们利用导数,解决一些生活中的优化问题
例1.汽油的使用效率何时最高
材料:随着我国经济高速发展,能源短缺的矛盾突现,建设节约性社会是众望所归。现实生活中,汽车作为代步工具,与我们的生活密切相关。众所周知,汽车的每小时耗油量与汽车的速度有一定的关系。如何使汽车的汽油使用效率最高(汽油使有效率最高是指每千米路程的汽油耗油量最少)呢?
通过大量统计分析,得到汽油每小时的消耗量g(L/h)与汽车行驶的平均速度v(km/h)之间的函数关系g=f(v)如图3.4-1,根据图象中的信息,试说出汽车的速度v为多少时,汽油的使用效率最高?
解:因为G=w/s=(w/t)/(s/t)=g/v
这样,问题就转化为求g/v的最小值,从图象上看,g/v
表示经过原点与曲线上点(v,g)的直线的斜率。继续观察图像,我们发现,当直线与曲线相切时,其斜率最小,在此点处速度约为90km/h,从树枝上看,每千米的耗油量就是途中切线的斜率,即f’(90),约为0.67L.
例2.磁盘的最大存储量问题
【背景知识】计算机把数据存储在磁盘上。磁盘是带有磁性介质的圆盘,并有操作系统将其格式化成磁道和扇区。磁道是指不同半径所构成的同心轨道,扇区是指被同心角分割所成的扇形区域。磁道上的定长弧段可作为基本存储单元,根据其磁化与否可分别记录数据0或1,这个基本单元通常被称为比特(bit)。
为了保障磁盘的分辨率,磁道之间的宽度必需大于,每比特所占用的磁道长度不得小于。为了数据检索便利,磁盘格式化时要求所有磁道要具有相同的比特数。
问题:现有一张半径为的磁盘,它的存储区是半径介于与之间的环形区域.
是不是越小,磁盘的存储量越大?
为多少时,磁盘具有最大存储量(最外面的磁道不存储任何信息)?
解:由题意知:存储量=磁道数×每磁道的比特数。
设存储区的半径介于与R之间,由于磁道之间的宽度必需大于,且最外面的磁道不存储任何信息,故磁道数最多可达。由于每条磁道上的比特数相同,为获得最大存储量,最内一条磁道必须装满,即每条磁道上的比特数可达。所以,磁盘总存储量
×
(1)它是一个关于的二次函数,从函数解析式上可以判断,不是越小,磁盘的存储量越大.
(2)为求的最大值,计算.
令,解得
当时,;当时,.
因此时,磁盘具有最大存储量。此时最大存储量为
例3.饮料瓶大小对饮料公司利润的影响
(1)你是否注意过,市场上等量的小包装的物品一般比大包装的要贵些?
(2)是不是饮料瓶越大,饮料公司的利润越大?
【背景知识】某制造商制造并出售球型瓶装的某种饮料.瓶子的制造成本是分,其中是瓶子的半径,单位是厘米。已知每出售1mL的饮料,制造商可获利0.2分,且制造商能制作的瓶子的最大半径为6cm
问题:(1)瓶子的半径多大时,能使每瓶饮料的利润最大?
(2)瓶子的半径多大时,每瓶的利润最小?
【引导】先建立目标函数,转化为函数的最值问题,然后利用导数求最值.
(1)半径为cm时,利润最小,这时,表示此种瓶内饮料的利润还不够瓶子的成本,此时利润是负值.
(2)半径为cm时,利润最大.
【思考】根据以上三个例题,总结用导数求解优化问题的基本步骤.
【总结】(1)认真分析问题中各个变量之间的关系,正确设定最值变量与自变量,把实际问题转化为数学问题,列出适当的函数关系式,并确定函数的定义区间;
(2)求,解方程,得出所有实数根;
(3)比较函数在各个根和端点处的函数值的大小,
根据问题的实际意义确定函数的最大值或最小值。
作业:P114习题3.4第2、4题
生活中的优化问题举例导学案及练习题
【学习要求】1.了解导数在解决实际问题中的作用.2.掌握利用导数解决简单的实际生活中的优化问题.
【学法指导】1.在利用导数解决实际问题的过程中体会建模思想.2.感受导数知识在解决实际问题中的作用,自觉形成将数学理论与实际问题相结合的思想,提高分析问题、解决问题的能力.
1.在经济生活中,人们常常遇到最优化问题.例如,为使经营利润最大、生产效率最高,或为使用力最省、用料最少、消耗最省等,需要寻求相应的最佳方案或最佳策略,这些都是
2.利用导数解决最优化问题的实质是.
3.解决优化问题的基本思路是
上述解决优化问题的过程是一个典型的过程.
引言数学源于生活,寓于生活,用于生活.在我们的生活中处处存在数学知识,只要你留意,就会发现经常遇到如何才能使“选址最佳”“用料最省”“流量最大”“利润最大”等问题,这些问题通常称为最优化问题,在数学上就是最大值、最小值问题.导数可以解决这些问题吗?如何解决呢?
探究点一面积、体积的最值问题
问题如何利用导数解决生活中的最优化问题?
例1学校或班级举行活动,通常需要张贴海报进行宣传.现让你设计一张如图所示的竖向张贴的海报,要求版心面积为128dm2,上、下两边各空2dm,左、右两边各空1dm.如何设计海报的尺寸,才能使四周空白面积最小?
跟踪训练1如图,四边形ABCD是一块边长为4km的正方形地域,地域内有一条河流MD,其经过的路线是以AB的中点M为顶点且开口向右的抛物线(河流宽度忽略不计).新长城公司准备投资建一个大型矩形游乐园PQCN,问如何施工才能使游乐园的面积最大?并求出最大面积.
探究点二利润最大问题
例2某制造商制造并出售球形瓶装的某种饮料.瓶子的制造成本是0.8πr2分,其中r(单位:cm)是瓶子的半径,已知每出售1mL的饮料,制造商可获利0.2分,且制造商能制作的瓶子的最大半径为6cm.
(1)瓶子半径多大时,能使每瓶饮料的利润最大?(2)瓶子半径多大时,每瓶饮料的利润最小?
跟踪训练2某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=ax-3+10(x-6)2,其中3x6,a为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.
(1)求a的值;
(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.
探究点三费用(用材)最省问题
例3已知A、B两地相距200km,一只船从A地逆水行驶到B地,水速为8km/h,船在静水中的速度为vkm/h(8v≤v0).若船每小时的燃料费与其在静水中的速度的平方成正比,当v=12km/h时,每小时的燃料费为720元,为了使全程燃料费最省,船的实际速度为多少?
跟踪训练3现有一批货物由海上从A地运往B地,已知轮船的最大航行速度为35海里/时,A地至B地之间的航行距离约为500海里,每小时的运输成本由燃料费和其余费用组成,轮船每小时的燃料费与轮船速度的平方成正比(比例系数为0.6),其余费用为每小时960元.
(1)把全程运输成本y(元)表示为速度x(海里/时)的函数;
(2)为了使全程运输成本最小,轮船应以多大速度行驶?
【达标检测】
1.方底无盖水箱的容积为256,则最省材料时,它的高为()
A.4B.6C.4.5D.8
2.某银行准备新设一种定期存款业务,经预算,存款量与存款利率的平方成正比,比例系数为k(k0).已知贷款的利率为0.0486,且假设银行吸收的存款能全部放贷出去.设存款利率为x,x∈(0,0.0486),若使银行获得最大收益,则x的取值为()
A.0.0162B.0.0324
C.0.0243D.0.0486
3.统计表明:某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/时)的函数解析式可以表示为y=1128000x3-380x+8(0x≤120).已知甲、乙两地相距100千米,当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
2.1生活中的变量关系
一名优秀的教师在教学时都会提前最好准备,高中教师要准备好教案为之后的教学做准备。教案可以让学生更好地进入课堂环境中来,帮助高中教师有计划有步骤有质量的完成教学任务。您知道高中教案应该要怎么下笔吗?考虑到您的需要,小编特地编辑了“2.1生活中的变量关系”,仅供参考,欢迎大家阅读。
2.1生活中的变量关系
一、教学目标:
1.通过高速公路上的实际例子,引起积极的思考和交流,从而认识到生活中处处可以遇到变量间的依赖关系.能够利用初中对函数的认识,了解依赖关系中有的是函数关系,有的则不是函数关系.
2.培养广泛联想的能力和热爱数学的态度.
二、教学重点:在于让学生领悟生活中处处有变量,变量之间充满了关系
教学难点:培养广泛联想的能力和热爱数学的态度
三、教学方法:探究交流法
四、教学过程
(一)、知识探索:
阅读课文P25页。实例分析:书上在高速公路情境下的问题。
在高速公路情景下,你能发现哪些函数关系?
2.对问题3,储油量v对油面高度h、油面宽度w都存在依赖关系,两种依赖关系都有函数关系吗?
问题小结:
1.生活中变量及变量之间的依赖关系随处可见,并非有依赖关系的两个变量都有函数关系,只有满足对于一个变量的每一个值,另一个变量都有唯一确定的值与之对应,才称它们之间有函数关系。
2.构成函数关系的两个变量,必须是对于自变量的每一个值,因变量都有唯一确定的y值与之对应。
3.确定变量的依赖关系,需分清谁是自变量,谁是因变量,如果一个变量随着另一个变量的变化而变化,那么这个变量是因变量,另一个变量是自变量。
(二)、新课探究——函数概念
1.初中关于函数的定义:
2.从集合的观点出发,函数定义:
给定两个非空数集A和B,如果按照某个对应关系f,对于A中的任何一个数x,在集合B中都存在唯一确定的数f(x)与之对应,那么就把这种对应关系f叫做定义在A上的函数,记作或f:A→B,或y=f(x),x∈A.;
此时x叫做自变量,集合A叫做函数的定义域,集合{f(x)︱x∈A}叫作函数的值域。习惯上我们称y是x的函数。
3.函数的三要素:
定义域,值域,对应法则;
4.函数值
当x=a时,我们用f(a)表示函数y=f(x)的函数值。
(三)、知识体验(课堂练习及课外作业)
1.某电器商店以2000元一台的价格进了一批电视机,然后以2100元的价格售出,随着售出台数的变化,商店获得的收入是,它们之间是______关系.
【函数y=100x,x∈D】
2.现实生活中,与时间存在函数关系的量_______________________.(三个以上)
【路程与时间;炮弹的射高与时间的变化关系问题;用电量与时间的关系。】
3.坐电梯时,电梯距地面的高度与时间之间存在______________关系.【函数】
4.在一定量的水中加入蔗糖,糖水的质量浓度与所加蔗糖的质量之间存在怎样的依赖关系?如果是函数关系,指出自变量和因变量.
【是函数关系;自变量是所加蔗糖的质量;因变量是糖水的质量浓度。】
5.日期与星期之间存在怎样的依赖关系?这种依赖关系是函数关系吗?如果是,指出自变量和因变量.
【是函数关系;自变量是日期;因变量是星期。】
6.下列过程中变量之间是否存在依赖关系,其中哪些是函数关系:
(1)地球绕太阳公转的过程中,二者的距离与时间的关系;
(2)在空中作斜抛运动的铅球,铅球距地面的高度与时间的关系;
(3)某水文观测点记录的水位与时间的关系;
(4)某十字路口,通过汽车的数量与时间的关系;
(5)等边三角形的边长与面积之间的关系.
7.下列各式是否表示y是x的函数关系?如果是,写出这个函数的解析式。
(1)5x+2y=1(xR);
(2)xy=-3(x0);
(3)(x(-1,0))
(4)(xR)
五、课后反思:
生活中的优化问题导学案及练习题
一、基础过关
1.炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x小时,原油温度(单位:℃)为f(x)=13x3-x2+8(0≤x≤5),那么,原油温度的瞬时变化率的最小值是()
A.8B.203C.-1D.-8
2.设底为等边三角形的直三棱柱的体积为V,那么其表面积最小时底面边长为()
A.3VB.32VC.34VD.23V
3.从边长为10cm×16cm的矩形纸板的四角截去四个相同的小正方形,作成一个无盖的盒子,则盒子容积的最大值为()
A.24cm3B.72cm3C.144cm3D.288cm3
4.用边长为120cm的正方形铁皮做一个无盖水箱,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接成水箱,则水箱最大容积为()
A.120000cm3B.128000cm3C.150000cm3D.158000cm3
5.要做一个圆锥形的漏斗,其母线长为20cm,要使其体积最大,则其高为()
A.2033cmB.100cmC.20cmD.203cm
二、能力提升
6.如图所示,某工厂需要围建一个面积为512平方米的矩形堆料场,一
边可以利用原有的墙壁,其他三边需要砌新的墙壁.当砌壁所用的材
料最省时,堆料场的长和宽分别为________.
7.某公司租地建仓库,每月土地占用费y1与仓库到车站的距离成反比,而每月库存货物的运费y2与到车站的距离成正比.如果在距离车站10千米处建仓库,这两项费用y1和y2分别为2万元和8万元,那么,要使这两项费用之和最小,仓库应建在离车站________千米处.
8.为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱,污水从A孔流入,经沉淀后从B孔流出,设箱体的长为a米,高为b米.已知流出的水中该杂质的质量分数与a,b的乘积ab成反比,现有制箱材料60平方米,问当a=________,b=________时,经沉淀后流出的水中该杂质的质量分数最小(A,B孔的面积忽略不计).
9.如图,要设计一张矩形广告,该广告含有大小相等的左右两个矩形栏
目(即图中阴影部分),这两栏的面积之和为18000cm2,四周空白的
宽度为10cm,两栏之间的中缝空白的宽度为5cm.怎样确定广告的
高与宽的尺寸(单位:cm),能使矩形广告面积最小?
10.某商场预计2010年从1月份起前x个月,顾客对某种商品的需求总量p(x)件与月份x的近似关系是p(x)=12x(x+1)(39-2x)(x∈N*,且x≤12).该商品的进价q(x)元与月份x的近似关系是q(x)=150+2x(x∈N*,且x≤12).(1)写出今年第x月的需求量f(x)件与月份x的函数关系式;
(2)该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,则此商场今年销售该商品的月利润预计最大是多少元?
11.一火车锅炉每小时煤消耗费用与火车行驶速度的立方成正比,已知当速度为20km/h时,每小时消耗的煤价值40元,其他费用每小时需200元,火车的最高速度为100km/h,火车以何速度行驶才能使从甲城开往乙城的总费用最少?
三、探究与拓展
网址:§1.4.1生活中的优化问题举例(1) https://www.yuejiaxmz.com/news/view/679508
相关内容
§1.4.1生活中的优化问题举例(1)教学:4.1 生活中的优化问题举例(1).doc
生活中的优化问题举例(1).doc
选修1–1:生活中的优化问题举例.ppt
3.4 生活中的优化问题举例
生活中的优化问题举例
生活中的优化问题举例一
生活中的优化问题举例(三)
生活中的优化问题举例PPT
生活中的优化问题举例.ppt