2060年碳中和目标如何实现?细说低碳、零碳、负碳等技术

发布时间:2025-01-13 16:49

倡导低碳生活方式,如低碳饮食、低碳旅行等 #生活知识# #生活理念# #节能减碳理念#

“碳中和”是指通过新能源开发利用、节能减排以及植树造林等形式,抵消人类生产生活行为中产生的二氧化碳或温室气体排放量,实现正负抵消,达到相对“零排放”的过程。我国提出的2060年碳中和目标,让大家都有理由相信,在这个目标指引下,我国将会加快碳价值的开发及相关产业的发展。

低碳、零碳终端用能技术

实现碳中和不仅需要能源来源的低碳化,也需要终端使用侧做出脱碳努力。低碳、零碳的终端用能技术分为五大类:节能、电气化、燃料替代、产品替代与工艺再造,以及碳循环经济。

2060年碳中和目标如何实现?细说低碳、零碳、负碳等技术

节能技术几乎适用于所有终端用能部门,这类技术可以通过提高能效、调整结构和转变生活方式,在保证人们生活水平的前提下实现脱碳。根据国际能源署的估算,建筑行业可以通过高效烹饪、高效供冷供热技 术、低碳设计等方法对全球能源效率提升做出超过40%的贡献(国际能源署,2019)。交通部门的节能主要包括传统燃油载运工具的降碳技术、运输结构的优化调整、运输装备和基础设施用能清洁化等。工业生产过程中节能技术涉及范围较广,相关技术繁多,总体上是通过实现换热流程优化、设备效率提升、数字化转型来提高系统能源效率。

电气化是实现碳中和的重要推动力,是配合低碳或零碳能源供应实现能源系统碳中和的重要工具。据估算,中国当前人类活动温室气体排放量的脱碳约50%将通过使用清洁电力来实现,包括交通运输系统的电气化、生产绿色氢能和各种工业流程的电气化(Sachs,2021)。交通电气化为5G通信、人工智能、大数据、超算等前沿技术的接入提供了空间,未来这些前沿技术与车路协同系统的融合发展将成为帮助交通部门脱碳的重要技术趋势。在建筑部门,照明、制冷、家用电器等已基本实现电气化,热泵供暖将成为电气化技术早期部署的关键领域。预计到2030年,全球家庭热泵取暖使用比例将提高到22%,这将为建筑部门减少50%的碳排放 (国际能源署,2020)。

新型燃料替代是终端用能领域实现零碳化必不可少的技术。氢能可以用于燃料替代以应对减排难度最大的20%温室气体排放,例如交通业可利用氢+燃料电池解决长距离运输问题,工业生产可以利用氢解决钢 铁和化工业的高排放问题,建筑业可以通过在天然气网掺混氢气降低燃气供热碳排放(Renssen,2020)。生物质从全生命周期的角度看具有近零碳排放的属性,具有良好的气候效应,在北方农村清洁供暖、交通运输,以及水泥、钢铁、化工等工业领域均有广阔的应用空间。

产品替代与工艺再造是适用于工业部门的低碳终端用能技术。产品替代主要体现在混凝土和钢铁等建筑材料方面。例如,煅烧黏土和惰性填料是减少水泥熟料含量的最被广泛使用的方法,据估计,通过该种方法每年可减少水泥行业6亿吨CO2的排放量。另外,通过智能化、新技术、新装备及具有颠覆性的节能工艺等工业流程再造技术研发,可降低工业生产的能耗,提高能源和资源利用率,有效降低碳排放。

循环经济是以再生和恢复为基础的经济模式,其目标是让经济增长不再依赖有限的资源,转而打造更加坚韧、可持续的经济社会系统。循环经济策略在工业领域有巨大的减排潜力,这类策略包括在产品设计源头避免废弃、重复使用产品和部件、材料再循环等。据测算,若在水泥、钢铁、塑料和铝四大关键工业领域运用循环经济策略,则能在2050年前减少其40%的二氧化碳排放量,约为37亿吨(能源转型委员会, 2018)。循环经济策略不仅具有减排潜力,也具有较高的成本效益。通过共享商业模式、高质量回收利用、 在建筑施工过程减少废弃等举措有望实现负减排成本,即在减排的同时创造收益(Material Economics,2018)。

负排放技术

负排放技术又称为碳移除技术(Carbon Dioxide Removal, CDR),是实现“1.5℃目标”不可或缺的关键技术。随着碳中和概念的提出和地球碳循环宏观视角的扩大,负排放技术也逐渐被用来总括所有能够产生负碳效应的技术路径,主要包括陆地碳汇和CCUS技术。

陆地碳汇是重要的基于自然的解决方案(Nature-based Solutions,NbS),按照介质分为林地、草原、农田和湿地碳汇。林地碳汇主要通过提升森林蓄积量和森林改造进行提升,具体手段包括森林保护、封山育林、 森林抚育、林分改造、森林可持续经营等森林减排增汇技术措施;草原碳汇提升需要保护草原和防止过度开垦放牧,包括建立草原生态补偿的长效机制、实施退牧还草工程;农田碳汇主要通过提高农田生产率和改善土壤质量实现吸收固定碳的功能。特别是提升农田土壤有机质含量,能够增强土壤对温室气体吸收和固定;湿地碳汇的增加主要通过湿地的总量增加和生态恢复实现,主要方式包括保护湿地、湿地生态恢复与重建、 增加湿地面积等。

2060年碳中和目标如何实现?细说低碳、零碳、负碳等技术

联合国气候变化专门委员会、国际能源署等专业机构的研究表明,若要实现《巴黎协定》中1.5℃和2℃的温升目标,CCUS技术不可或缺。

根据国际能源署预测,相较于《巴黎协定》2℃的温升目标,为实现2050年全球碳净零排放的额外脱碳工作中,CCUS将贡献25%的份额,而其余35%来自电气化的增加,20%来自生物能源,5%来自氢气。而清华大学气候变化与可持续发展研究院在我国节能减排路径的研究中也指出,2060年碳中和目标,只有在强化政策并叠加CCUS技术使用后才可实现。

CCUS技术一直是被认为是实现化石能源真正清洁利用的唯一解决方案。CCUS技术的主要原理是阻止各类化石能源在利用中产生的CO2进入大气层。在碳中和目标下,化石能源在能源消费体系中面临大幅度下降,最终将保留一定的占比以支持电力系统稳定、难脱碳工业部门和其他部门的应用等。

这部分化石能源的利用需要匹配CCUS技术以保证其净零排放的目标。CCUS技术作为一项可以实现化石能源大规模低碳利用的技术,是未来我国实现碳中和与保障能源安全不可或缺的技术手段。

海洋碳封存技术

1、海水储碳的自然过程

通过海—气交换的自然过程,海洋每年可净吸收约 2.3 Gt C。海水储碳的自然过程主要可分为 4 种机制:

1. 生物泵(BP),主要利用海水中的浮游植物通过光合作用吸收溶解表层海水中的 CO2;

2. 微型生物泵(MCP),利用海洋微型生物细胞、细菌和病毒等对碳的捕食和代谢过程,将活性溶解有机碳转化为惰性有机碳;

3. 碳酸盐泵(CP),将海水中溶解的 CO2 与钙离子反应生成碳酸钙后沉入海底;

4. 溶解度泵(SP),通过海洋环流和翻转等水体运动,将高纬度地区海水在低温、高盐度条件下吸收的 CO2 从表层输送至深海。

人类活动排放的CO2进入海洋后,可在深海水体中停留成百上千年,在海底沉积物中的贮存时间甚至可长达上百万年。

2060年碳中和目标如何实现?细说低碳、零碳、负碳等技术

2、海洋碳汇空间

海洋碳封存技术应用前景广阔,可分为滨海“蓝碳”、海洋固碳和储碳、海底地层碳封存 3 种碳汇空间。

1.滨海“蓝碳”。指以红树林、盐沼、海草床等为代表的滨海湿地生态系统通过光合系统作用吸收并固存的碳,主要储存于植物的根、茎、叶,以及沿海沉积物中。

2.海洋固碳和储碳。技术手段多样化,主要以 BP、MCP、CP 和 SP 这 4 种海洋碳泵机制为原理,包括结合海水养殖的海洋生物増汇固碳技术、向海水施放营养素来增强海洋对大气 CO2 的吸收效率的海洋肥化技术、大规模工业点源捕集 CO2 后将其直接注入深海低洼地形处形成“二氧化碳湖”的技术等 。

3.海底地层碳封存。包括将 CO2 注入海底玄武岩或橄榄岩孔隙后形成稳定碳酸盐的碳矿化技术、结合油气开采将超临界 CO2 注入油气储层或深部咸水层的海洋地质封存技术等;此外,还有科学家曾提出将 CO2 转化为水合物形式的固体后埋入海底,或将 CO2 矿化后抛入海底等方法。

文章来源: 中国经济学人,姚海涛工作室,科学参考

网址:2060年碳中和目标如何实现?细说低碳、零碳、负碳等技术 https://www.yuejiaxmz.com/news/view/706601

相关内容

我国如何实现碳中和目标?黄震院士提出“再电气化”路径 生产“零碳电力”
如何实现碳中和?实现碳中和目标的四大措施建议
2060年实现碳中和究竟应该怎样做? 文
什么是碳中和,如何实现?
双碳目标是什么意思 何时实现碳中和
“碳达峰 碳中和”将如何改变我们的生活?
【实现“双碳”目标离不开关键技术的重大突破】
实现“碳中和”目标需做好“加减乘除”,避免一刀切
“双碳”目标下,既有建筑节能减碳如何实现?
实现“双碳”目标,节水如何应对?

随便看看