Value = Current(Normal)Earnings * (8.5 plus twice the excepted annual growth rate)
可直接表示为:value = E * (8.5 + 2 * R) E 表示每股收益( EPS) ,决定了公司内在价值的基准; R 表示预期收益增长率,体现了公司的未来盈利能力;数值 8.5 被格雷厄姆认为是一家预期收益增长率为 0 的公司的合理市盈率,故( 8.5+2*R) 可以被视为预期收益增长率为 R 的公司的合理市盈率。股票每股收益和其合理市盈率的乘积则直观的给出了合理的估值水平。 策略实现 代码如下# coding: utf-8 # @author: lin # @date: 2018/11/20 import QUANTAXIS as QA import pandas as pd import time import matplotlib.pyplot as plt import numpy as np from sklearn import linear_model pd.set_option('max_colwidth', 5000) pd.set_option('display.max_columns', 5000) pd.set_option('display.max_rows', 5000) class InherentValue: def __init__(self, start_time, stop_time, n_stock=10, stock_init_cash=1000000, n_EPS_before=5): self.Account = QA.QA_Account() # 初始化账户 self.Account.reset_assets(stock_init_cash) # 初始化账户 self.Account.account_cookie = 'inherent_value' self.Broker = QA.QA_BacktestBroker() self.time_quantum_list = ['-12-31', '-09-30', '-06-30', '-03-31'] self.start_time = start_time self.stop_time = stop_time self.n_EPS_before = n_EPS_before self.n_stock = n_stock self.stock_pool = [] self.data = None self.ind = None
1234567891011121314151617181920212223242526272829303132