生活垃圾焚烧飞灰中钙的脱除与回收
垃圾分类能提高回收利用率,减少垃圾焚烧带来的碳排放。 #生活常识# #环保节能技巧# #碳中和知识#
摘要:采用氯化铵(NH4Cl)溶液浸出生活垃圾焚烧飞灰中钙后,再用碳化法对其进行回收。通过单因素实验和响应面设计获取钙离子浸出的最佳条件为:NH4Cl浓度为3.9 mol/L,反应时间为64 min,液固比为5.6 mL/g;3个因素对Ca2+浸出的影响程度排序为液固比>NH4Cl浓度>反应时间。飞灰残渣重金属毒性浸出结果表明:Pb、Cu、Zn、Cd、Ni浸出浓度分别为0.0929,0.0012,0.0054,0.0017,0.0002 mg/L,明显低于GB 8978—1996《污水综合排放标准》中规定的最高允许排放浓度限值,即飞灰残渣的重金属毒性浸出结果满足HJ 1134—2020《生活垃圾焚烧飞灰污染控制技术规范(试行)》中6.3条综合利用要求。采用自制的PAN-PEI吸附盐洗液中的重金属后,再回收的碳酸钙品质极佳,其主要晶型为球霰石,Pb、Cd、Fe含量分别为0.0009%、0.0002%、0.0103%,符合HG/T 2776—2010《工业细微沉淀碳酸钙和工业微细性沉淀碳酸钙》标准要求,具有广泛的应用潜力。
关键词:飞灰 / 氯化铵 / 重金属 / 钙离子 / 碳酸钙Abstract:After leaching calcium from fly ash of municipal solid waste incineration with ammonium chloride solution, the carbonization method was used to recover calcium carbonate from the leaching solution. The optimal conditions for leaching calcium ion after single factor experiment and response surface design were as follows:ammonium chloride concentration=3.9 mol/L, reaction time=64 min, liquid-solid ratio=5.6 mL/g; the degree of influence of the three factors on the leaching of calcium ions was in the order of liquid-solid ratio>ammonium chloride concentration>reaction time.The results of metal toxicity leaching from fly ash residues showed that the leaching concentration of Pb、Cu、Zn、Cd、Ni were 0.0929,0.0012,0.0054,0.0017, 0.0002 mg/L, respectively, which were significantly lower than the maximum permissible emission concentration limit stipulated in GB 8978-1996 Integrated Wastewater Discharge Standard. And the heavy metal toxicity leaching results of fly ash residues met the comprehensive utilization requirements of Term 6.3 in HJ 1134-2020 Technical Specification for Pollution Control of Fly-ash from Municipal Solid Waste Incineration. After using homemade PAN-PEI to adsorb heavy metals in the salt wash, the recycled calcium carbonate was of excellent quality. Its main crystal type is vaterite, and the contents of Pb, Cd, and Fe were 0.0009%, 0.0002%, and 0.0103%, respectively, in line with HG/T 2776-2010 Fine Precipitated Calcium Carbonate and Fine Activated Precipitated Calcium Carbonate for Industrial Use standard requirements, showing a wide range of application potential.
[1]MAGNANELLI E, TRANÅS O L, CARLSSON P, et al. Dynamic modeling of municipal solid waste incineration[J]. Energy, 2020, 209:118426.[2]LU S Y, YANG D F, GE X, et al. The internal exposure of phthalate metabolites and bisphenols in waste incineration plant workers and the associated health risks[J]. Environ Int, 2020, 145:106101.[3]QUINA M J, BORDADO J M, QUINTA-FERREIRA R M. Recycling of air pollution control residues from municipal solid waste incineration into lightweight aggregates[J]. Waste Management, 2014, 34(2):430-438.[4]童立志,韦黎华,王峰,等. 焚烧飞灰重金属含量及浸出长期变化规律研究[J]. 中国环境科学, 2020, 40(5):2132-2139.[5]XU H, MIAO J D, CHEN P, et al. Chemical and geotechnical properties of solidified/stabilized MSWI fly ash disposed at a landfill in China[J]. Engineering Geology, 2019, 255:59-68.[6]谭锦涛,吴新,李军辉,等. 稻壳灰中温热处理稳固化垃圾飞灰重金属[J]. 中国环境科学, 2020, 40(7):3054-3060.[7]许鹏,赵庆良,邱微. 垃圾焚烧飞灰制作碱激发砖的环境安全性评估[J]. 哈尔滨工业大学学报, 2020, 52(11):40-45.[8]ZHAO S Z, LIU B, DING Y J, et al. Study on glass-ceramics made from MSWI fly ash, pickling sludge and waste glass by one-step process[J]. Journal of Cleaner Production, 2020, 271:122674.[9]LIU J, HU L, TANG L P, et al. Utilisation of municipal solid waste incinerator (MSWI) fly ash with metakaolin for preparation of alkali-activated cementitious material[J]. Journal of Hazardous Materials, 2021, 402:123451.[10]WANG B M, FAN C C. Hydration behavior and immobilization mechanism of MgO-SiO2-H2O cementitious system blended with MSWI fly ash[J]. Chemosphere, 2020, 250:126269.[11]王琦,郭德琪. 轻质碳酸钙制备工艺参数研究[J]. 无机盐工业, 2018, 50(3):43-45.[12]KANG D, SON J, YOO Y, et al. Heavy-metal reduction and solidification in municipal solid waste incineration (MSWI) fly ash using water, NaOH, KOH, and NH4OH in combination with CO2 uptake procedure[J]. Chemical Engineering Journal, 2020, 380:122534.[13]刘兴帅. 城市垃圾焚烧飞灰制备轻质碳酸钙及重金属迁移研究[D]. 北京:中国矿业大学, 2019.[14]陈秋鸽,王戬,张志业,等. 磷石膏脱硫钙渣浸取液中杂质对碳酸钙晶型的影响[J]. 化工进展, 2016, 35(11):3714-3719.[15]ZHAO K X, HU Y Y, TIAN Y Y, et al. Chlorine removal from MSWI fly ash by thermal treatment:effects of iron/aluminum additives[J]. Journal of Environmental Sciences (China), 2020, 88:112-121.[16]郑旭帆,杜艺,苗恩东,等. 城市固体废弃物焚烧飞灰碳酸化研究进展[J]. 洁净煤技术, 2022, 28(1):187-197.[17]时婷,王新刚,巫建锋,等. 磷石膏脱硫钙渣制备轻质碳酸钙[J]. 化工进展, 2015, 34(1):178-182.[18]郭琳琳,范小振,张文育,等. 电石渣制备高附加值碳酸钙的研究进展[J]. 化工进展, 2017, 36(1):364-371.[19]翟文琰,李孟,张倩. 过硫酸盐协同光催化纳米ZnO降解盐酸四环素的影响机制[J]. 中国环境科学, 2020, 40(6):2483-2492.[20]张宇晨,陈小朵,桂思,等. 垃圾焚烧飞灰中矿物组分和重金属污染特征研究[J]. 环境工程, 2022:1-9.[21]折开浪,李萍,刘景财,等. 碳酸化对不同碱度飞灰中重金属的长期影响研究[J]. 中国环境科学, 2022,42(8):3832-3840.[22]LENG L J, LENG S Q, CHEN J, et al. The migration and transformation behavior of heavy metals during co-liquefaction of municipal sewage sludge and lignocellulosic biomass[J]. Bioresour Technol, 2018, 259:156-163.[23]TAGHIPOUR M, JALALI M. Heavy metal release from some industrial wastes:influence of organic and inorganic acids, clay minerals, and nanoparticles[J]. Pedosphere, 2018, 28(1):70-83.[24]JIAO F C, ZHANG L, DONG Z B, et al. Study on the species of heavy metals in MSW incineration fly ash and their leaching behavior[J]. Fuel Processing Technology, 2016, 152:108-115.[25]LUO H W, CHENG Y, HE D Q, et al. Review of leaching behavior of municipal solid waste incineration (MSWI) ash[J]. Science of the Total Environment, 2019, 668:90-103.[26]ZHANG W, ZHANG F Z, MA L P, et al. An efficient methodology to use hydrolysate of phosphogypsum decomposition products for CO2 mineral sequestration and calcium carbonate production[J]. Journal of Cleaner Production, 2020, 259:120826.[27]颜鑫,卢云峰,马媛媛,等. 氯化钙-氨水体系生产纳米碳酸钙的复合碳化机理研究[J]. 无机盐工业, 2019, 51(7):77-80.[28]王芬,余军霞,肖春桥,等. CO2碳化法制备微米级球霰石型食品碳酸钙的研究[J]. 硅酸盐通报, 2017, 36(1):43-50.[29]宋靖钊. 焙烧-水浸-碳化法制备碳酸钙的工艺研究[D]. 天津:河北工业大学, 2020.[30]HAN Y S, HADIKO G, FUJI M, et al. Effect of flow rate and CO2 content on the phase and morphology of CaCO3 prepared by bubbling method[J]. Journal of Crystal Growth, 2005, 276(3/4):541-548.[31]HAN Y S, HADIKO G, FUJI M, et al. Influence of initial CaCl2 concentration on the phase and morphology of CaCO3 prepared by carbonation[J]. Journal of Materials Science, 2006, 41(14):4663-4667.[32]赵历,卓民权,龚福忠,等. 碳化法制备球霰石碳酸钙微球及形成机理[J]. 无机盐工业, 2021, 53(3):38-43.期刊类型引用(2)
其他类型引用(0)
网址:生活垃圾焚烧飞灰中钙的脱除与回收 https://www.yuejiaxmz.com/news/view/368694
相关内容
生活垃圾渗滤液脱除垃圾焚烧飞灰中氯及重金属的实验生活垃圾焚烧飞灰处置技术与应用瓶颈
垃圾焚烧飞灰中重金属的传统与生物电沉积联用技术研究
垃圾焚烧飞灰去除硫化氢气体
生活垃圾焚烧飞灰处理技术研究进展
热处理法降解生活垃圾焚烧飞灰中二噁英的技术现状
浅析在生活垃圾焚烧项目中SNCR与SCR脱硝技术
生活垃圾焚烧
弗里德尔盐去除城市生活垃圾焚烧飞灰洗涤废水中高浓度氯的工艺优化及机理,Journal of Environmental Management
生活垃圾焚烧烟气净化处理技术