基于生物光谱技术结合多元统计分析的消毒效果快速评价方法

发布时间:2025-03-13 07:12

利用技术分析和基本面分析相结合的方法 #生活技巧# #理财规划技巧# #股票分析#

摘要: 利用傅立叶变换红外光谱研究了次氯酸钠、过氧化氢和紫外线对革兰氏阴性大肠杆菌(Escherichia coli)和革兰氏阳性海氏肠球菌(Enterococcus hirae)的生物学效应。结果表明:细菌失活和光谱变化之间存在显著的相关性,而且不同消毒剂和细菌引起的效果曲线也明显不同。革兰氏阴性菌比革兰氏阳性菌更容易受消毒剂的影响。NaClO对膜透性、蛋白质和脂类氧化的生物效应最为显著,其次是H2O2光解产生的HO ·自由基的氧化效应,最后是紫外辐射对DNA的损伤作用。研究结果为了解消毒过程的生物效应提供了新的见解,并为优化消毒过程、确保水安全提供了科学依据。

Abstract: The biological effects of NaClO, H2O2 or UV towards gram-negative Escherichia coli and gram-positive Enterococcus hirae were investigated by using FTIR microspectroscopy. The results show significant correlations between bacterial inactivation and spectral alterations, and also distinctly different effects profiles induced by the different disinfectants and bacteria. Gram-negative bacteria were more vulnerable to disinfection than gram-positive bacteria. The most significant biological effects on membrane permeability and oxidation of proteins and lipids were observed for NaClO, followed by the oxidation effects of HO · radicals generated with photolysis-of H2O2, and lastly through DNA damage by UV radiation. The findings provide new insights into the biological effects of disinfection processes, and a scientific basis for optimization to ensure the water safety.

图  1   NaClO、H2O2和UV对E.coli和E.hirae的暴露剂量-对数杀灭关系

Figure  1.   The antimicrobial activity of NaClO, H2O2 and UV on E.coli and E.hirae

图  2   不同剂量消毒剂处理E.coli的红外光谱分析

Figure  2.   The analysis of FTIR spectra from E.coli treated with increasing doses of disinfectants

图  3   不同剂量消毒剂处理的E.hirae的红外光谱分析

Figure  3.   The analysis of FTIR spectra from E.hirae treated with increasing doses of disinfectants

图  4   E.coli和E.hirae 2-log灭活状态下的红外光谱PCA-LDA得分图和聚类向量图

Figure  4.   The PCA-LDA scores plots and cluster vectors of FTIR spectra obtained from E.coli and E.hirae at the 2-log inactivation

图  5   消毒能力与生物变化的回归分析

Figure  5.   The correlation analysis between the disinfection capacity and the biological alterations

表  1   不同剂量消毒剂处理的E.coli和E.hirae的前5个峰的峰指认

Table  1   The peak assignments for the top five peaks from the loadings plots for E.coli and E.hirae treated with different doses of disinfectants

消毒剂 E.coli E.hirae 波长/cm-1 特征峰识别 波长/cm-1 特征峰识别 NaClO 1 543 酰胺II 1 624 酰胺I NaClO 1 624 酰胺I 1 061 C—C骨架 NaClO 1 030 C—O伸缩振动 995 RNA NaClO 1 084 对称磷酸伸缩振动 1 161 C—OH伸缩振动 NaClO 1 747 脂质 1 658 酰胺I H2O2 1 543 酰胺II 999 糖原 H2O2 1 608 酰胺I 1 624 酰胺I H2O2 1 670 酰胺I 1 246 非对称磷酸伸缩振动 H2O2 1 724 脂质 1 064 C—O伸缩振动 H2O2 1 018 糖原 1 523 酰胺II UV 1 651 酰胺I 1 662 酰胺I UV 987 蛋白质磷酸化 1 701 脂质 UV 1 597 酰胺I 1 520 酰胺II UV 1 107 糖原 1 215 非对称磷酸伸缩振动 UV 1 230 非对称磷酸伸缩振动 1 030 糖原 [1]

MAZHAR M A, KHAN N A, AHMED S, et al. Chlorination disinfection by-products in Municipal drinking water: a review[J]. Journal of Cleaner Production, 2020, 273(10): 123159/1-13.

[2]

HONG T M, NGUYE N, POONYANOOC H, et al. Application of a novel, continuous-feeding ultraviolet light emitting diode (UV-LED) system to disinfect domestic wastewater for discharge or agricultural reuse[J]. Water Research, 2019, 153: 53-62. doi: 10.1016/j.watres.2019.01.006

[3]

WIGGINTON K R, PECSON B M, SIGSTAM T, et al. Virus inactivation mechanisms: impact of disinfectants on virus function and structural integrity[J]. Environmental Science & Technology, 2012, 46(21): 12069-12078.

[4] 易在炯, 田桢干, 朱仁义, 等. 化学消毒剂灭活病毒效果评价方法与影响因素分析[J]. 中国口岸科学技术, 2021, 12(3): 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-ZOSJ202112014.htm [5]

EGGERS M, SCHWEBKE I, SUCHOMEHL M, et al. The European tiered approach for virucidal efficacy testing- rationale for rapidly selecting disinfectants against emerging and re-emerging viral diseases[J]. Eurosurveillance, 2021, 26(3): 1-7.

[6] 奚兵, 汤敏. 不同试验方法对某种抗菌洗剂杀菌效果的比较[J]. 江苏预防医学, 2008, 19(4): 56-57. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYF200804033.htm [7]

OBINAJU B E, MARTIN F L. ATR-FTIR spectroscopy reveals polycyclic aromatic hydrocarbon contamination despite relatively pristine site characteristics: results of a field study in the Niger Delta[J]. Environment International, 2016, 89/90: 93-101. doi: 10.1016/j.envint.2016.01.012

[8]

STRONG R J, HALSALL C J, JONES K C, et al. Infrared spectroscopy detects changes in an amphibian cell line induced by fungicides: comparison of single and mixture effects[J]. Aquatic Toxicology, 2016, 178: 8-18. doi: 10.1016/j.aquatox.2016.07.005

[9]

LEWIS P D, LEWIS K E, GHOSAL R, et al. Evaluation of FTIR Spectroscopy as a diagnostic tool for lung cancer using sputum[J]. BMC Cancer, 2010, 10(1): 1-10. doi: 10.1186/1471-2407-10-1

[10]

JAMES O, HOLLY J B, et al. Spectrochemical analysis of sycamore (Acer pseudoplatanus) leaves for environmental health monitoring[J]. The Analytical Journal of the Royal Society of Chemistry, 2016, 141(10): 2896-2903.

[11]

PANG W, LI J, AHMADZAI A A, et al. Identification of benzo[a]pyrene-induced cell cycle-associated alterations in MCF-7 cells using infrared spectroscopy with computational analysis[J]. Toxicology, 2012, 298: 24-29. doi: 10.1016/j.tox.2012.04.009

[12]

BAKER M J, TREVISAN J, BASSAN P, et al. Using Fourier transform IR spectroscopy to analyze biological materials[J]. Nature Protocols, 2014, 9(8): 1771-1791. doi: 10.1038/nprot.2014.110

[13]

LABJANI V, HOTI V, POURAN H M, et al. Bimodal responses of cells to trace elements: insights into their mechanism of action using a biospectroscopy approach[J]. Chemosphere, 2014, 112: 377-384. doi: 10.1016/j.chemosphere.2014.03.117

[14]

MARTIN F L, KELLY J G, LLABJANI V, et al. Distinguishing cell types or populations based on the computational analysis of their infrared spectra[J]. Nature Protocols, 2010, 5(11): 1748-1760. doi: 10.1038/nprot.2010.133

[15]

LI J, STRONG R, TREVISAN J, et al. Dose-related alterations of carbon nanoparticles in Mammalian cells detected using biospectroscopy: potential for real-world effects[J]. Environmental Science & Technology, 2013, 47(17): 10005-10011.

[16]

TREVISAN J, ANGELOV P P, SCOTT A D, et al. IRootLab: a free and open-source MATLAB toolbox for vibrational biospectroscopy data analysis[J]. Bioinformatics, (8): 1095-1097.

[17]

RIDING M J, MARTIN F L, TREVISAN J, et al. Concentration-dependent effects of carbon nanoparticles in gram-negative bacteria determined by infrared spectroscopy with multivariate analysis[J]. Environmental Pollution, 2012, 163: 226-234. doi: 10.1016/j.envpol.2011.12.027

[18]

KELLY A H, RICHARD F S, et al. Vibrational biospectroscopy characterizes biochemical differences between cell types used for toxicological investigations and identifies alterations induced by environmental contaminants[J]. Environmental Toxicology and Chemistry, 2017, 36(11): 3127-3137. doi: 10.1002/etc.3890

[19]

HIDALGO E, BARTOLOME R, DOMINGUEZ C. Cytotoxicity mechanisms of sodium hypochlorite in cultured human dermal fibroblasts and its bactericidal effectiveness[J]. Chemico-Biological Interactions, 2002, 139(3): 265-282. doi: 10.1016/S0009-2797(02)00003-0

[20]

CHO M, KIM J, KIM J Y, et al. Mechanisms of Escherichia coli inactivation by several disinfectants[J]. Water Research, 2010, 44(11): 3410-3418. doi: 10.1016/j.watres.2010.03.017

[21]

HASHEMINIA S, R FARHAD A, SAATCHI M, et al. Synergistic antibacterial activity of chlorhexidine and hydrogen peroxide against Enterococcus faecalis[J]. Journal of Oral Science, 2013, 55(4): 275-280. doi: 10.2334/josnusd.55.275

[22]

KOEBNIK R, LOCHER K P, GELDER P V. Structure and function of bacterial outer membrane proteins: barrels in a nutshell[J]. Molecular Microbiology, 2010, 37(2): 239-253.

[23]

DZWOLAK W, SMIRNOVAS V. A conformational α-helix to β-sheet transition accompanies racemic self-assembly of polylysine: a FT-IR spectroscopic study[J]. Biophysical Chemistry, 2005, 115(1): 49-54. doi: 10.1016/j.bpc.2005.01.003

[24]

CARDAMONE J M. Investigating the microstructure of keratin extracted from wool: peptide sequence (MALDI-TOF/TOF) and protein conformation (FTIR)[J]. Journal of Molecular Structure, 2010, 969: 97-105. doi: 10.1016/j.molstruc.2010.01.048

[25]

HUTH K C, JAKOB F M, SAUGEL B, et al. Effect of ozone on oral cells compared with established antimicrobials[J]. European Journal of Oral Sciences, 2006, 114(5): 435-440. doi: 10.1111/j.1600-0722.2006.00390.x

[26]

AKEN B V, LIN L S. Effect of the disinfection agents chlorine, UV irradiation, silver ions, and TiO2 nanoparticles/near-UV on DNA molecules[J]. Water Science & Technology, 2011, 64(6): 1226-1232.

[27]

FUKUZAKI S. Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes[J]. Biocontrol Science, 2006, 11(4): 147-157. doi: 10.4265/bio.11.147

[28]

BAKER R W. Studies on the reaction between sodium hypochlorite and proteins[J]. Biochemical Journal, 1947, 41(3): 337-342. doi: 10.1042/bj0410337

[29]

CHEN P, EGGLESTON P A. Allergenic proteins are fragmented in low concentrations of sodium hypochlorite[J]. Clinical and Experimental Allergy, 2001, 31(7): 1086-1093. doi: 10.1046/j.1365-2222.2001.01127.x

[30]

ZHAI S, ZHANG W M, LI T, et al. Sodium hypochlorite assisted membrane cleaning: alterations in the characteristics of organic foulants and membrane permeability[J]. Chemosphere, 2018, 211: 139-148. doi: 10.1016/j.chemosphere.2018.07.144

[31]

KONG J, YU S. Fourier transform infrared spectroscopic analysis of protein secondary structures[J]. Acta Biochimica et Biophysica Sinica, 2010, 39(8): 549-559.

[32]

RATTANAKUL S, OGUMA K. Analysis of Hydroxyl radicals and inactivation mechanisms of bacteriophage MS2 in response to a simultaneous application of UV and chlorine[J]. Environmental Science & Technology, 2016, 51(1): 455-462.

[33]

IKAI H, NAKAMURA K, SHIRATO M, et al. Photolysis of hydrogen peroxide, an effective disinfection system via hydroxyl radical formation[J]. Antimicrob Agents Chemother, 2010, 54(12): 86-91.

[34]

AL-ASSAF S, PHILLIPS G O, DEEBLE D J, et al. The enhanced stability of the cross-linked hylan structure to hydroxyl (OH) radicals compared with the uncross-linked hyaluronan[J]. Radiation Physics & Chemistry, 1995, 46(2): 207-217.

[35]

TAGLIETTI A, FERNANDEZ Y D, AMATO E, et al. Antibacterial activity of glutathione-coated silver nanoparticles against gram positive and gram negative bacteria[J]. Langmuir, 2012, 28(21): 8141-8148.

[36]

MASSIMILIANO G, LEENA L, MARIKKI L. Cell cycle arrest and apoptosis provoked by UV radiation-induced DNA damage are transcriptionally highly divergent responses[J]. Nucleic Acids Research, 2003, 31(16): 4779-4790.

[37]

KAPOOR M, HAMM R, YAN W, et al. Cooperative phosphorylation at multiple sites is required to activate p53 in response to UV radiation[J]. Oncogene, 2000, 19(3): 358-364.

[38]

JANSSENS V, GORIS J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling[J]. Biochemical Journal, 2001, 353: 417-439.

[39]

JAMIESON E R, LIPPARD S J. Structure, recognition, and processing of cisplatin-DNA adducts[J]. Chemical Reviews, 1999, 99(9): 2467-2498.

[40]

KRIPKE M L, COX P A, ALAS L G, et al. Pyrimidine dimers in DNA initiate systemic immunosuppression in UV-irradiated mice[J]. Proceedings of the National Academy of Sciences, 1992, 89(16): 7516-7520.

网址:基于生物光谱技术结合多元统计分析的消毒效果快速评价方法 https://www.yuejiaxmz.com/news/view/821715

相关内容

羟基自由基溶液快速消毒效果评价
基于眩光评价的多媒体教室采光节能优化设计研究
基于运动自动车的元宇宙心理评估系统技术方案
农业节水技术综合评价与节水潜力分析
基于java的饮食分享平台系统设计与实现
基于新冠状肺炎疫情下对空气进行杀菌消毒的技术分析
不同消毒技术对空气消毒效果及其影响因素的研究进展
浅谈基于物联技术的企业能效管理方法研究
深海生物技术与海洋药学的结合.pptx
原子吸收分光光度计最后结果的计算公式A=KC中K表示?

随便看看