银行“大模型+智能客服”蓄势待发:一文了解五大国有银行客服场景大模型落地现状
选择信誉好的国有银行或大型股份制银行存款更安全 #生活知识# #生活指南# #理财建议# #银行存款#
2023年10月,中央金融工作会议召开,强调金融是国民经济的血脉,是国家核心竞争力的重要组成部分,要加快建设金融强国。会议提出要引导金融机构加大对科技创新、绿色转型、普惠小微、数字经济等方面的支持力度,做好科技金融、绿色金融、普惠金融、养老金融、数字金融“五篇大文章”。
银行业一直是科技金融的“前锋部队”,为整个金融行业的技术创新都提供了范例。在大模型技术的浪潮下,银行业积极探索大模型应用,其中智能客服已经成为必不可少的场景之一。根据沙丘智库发布的《[2024年金融业生成式AI技术应用跟踪报告]》,智能客服是当前银行业落地多且产生阶段性成果的第二大场景。
从底层核心NLP技术的历史演进来看,基于规则的聊天机器人代表了智能客服演进的起点,随着机器学习技术的发展,基于规则的聊天机器人逐渐被基于模式匹配的聊天机器人所取代。而相较于基于规则的聊天机器人,机器学习技术驱动的聊天机器人具有了一定程度的智能,可以处理一些复杂的对话场景;深度学习技术的兴起使得聊天机器人进入了一个新阶段,深度学习技术驱动的聊天机器人采用了RNN(循环神经网络)、GAN(生成对抗网络)等混合AI技术,使聊天机器人能够进行更加自然和人性化的交互。
大模型技术出现后,聊天机器人的核心技术进一步升级,新技术的出现并不是要完全淘汰之前的技术实现方式,而是在某些模块上进行优化,以实现更好的效果,在人工智能技术组合基础上实现整体迭代。例如,大模型虽然提升了聊天机器人的自然语言理解模块,但对于特定任务仍然可以使用正则表达式等基于规则的逻辑实现。
当前,由于金融行业的严谨性以及大模型的幻觉缺陷,还没有银行将大模型直接面向客户提供服务,更多是对内作为坐席人员、运营人员的提效助手使用。根据沙丘智库的调研,当前基于大模型的智能客服解决方案在以下环节渗透率最高且发挥出明显价值:
• 对话内容总结:基于大模型的总结能力,可以为人工客服提供坐席辅助、工单预填、前情摘要等能力,提升坐席人员的工作效率,降低客户通话时长。
• 知识资产构建:基于大模型的内容创作、总结、分类等能力,可以从对话记录等非结构化文档数据进行智能的知识抽取,自动完成知识标注和知识维护,这些知识点将被用于知识管理流程和系统中,然后补充到企业知识库中。
• 机器人坐席:大模型提高了机器人客服的意图理解和内容分类能力,这是机器人客服更像“人”一样与用户对话的核心能力。此外,内容创作和增强、语气/说话风格、总结等能力的结合,使得机器人坐席能够有效理解和分析自然语言,与用户进行更加自然、流畅的交互,提升用户体验。
五大国有银行“大模型+智能客服”应用探索现状如下:
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
大模型 AI 能干什么?大模型是怎样获得「智能」的?用好 AI 的核心心法大模型应用业务架构大模型应用技术架构代码示例:向 GPT-3.5 灌入新知识提示工程的意义和核心思想Prompt 典型构成指令调优方法论思维链和思维树Prompt 攻击和防范…第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
为什么要做 RAG搭建一个简单的 ChatPDF检索的基础概念什么是向量表示(Embeddings)向量数据库与向量检索基于向量检索的 RAG搭建 RAG 系统的扩展知识混合检索与 RAG-Fusion 简介向量模型本地部署…第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
为什么要做 RAG什么是模型什么是模型训练求解器 & 损失函数简介小实验2:手写一个简单的神经网络并训练它什么是训练/预训练/微调/轻量化微调Transformer结构简介轻量化微调实验数据集的构建…第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
硬件选型带你了解全球大模型使用国产大模型服务搭建 OpenAI 代理热身:基于阿里云 PAI 部署 Stable Diffusion在本地计算机运行大模型大模型的私有化部署基于 vLLM 部署大模型案例:如何优雅地在阿里云私有部署开源大模型部署一套开源 LLM 项目内容安全互联网信息服务算法备案…学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】网址:银行“大模型+智能客服”蓄势待发:一文了解五大国有银行客服场景大模型落地现状 https://www.yuejiaxmz.com/news/view/491923
相关内容
未来银行的模样|浙江农商联合银行:探索智能化、轻型化网点转型之路如何持续优化FreeSWITCH大模型智能客服的性能?
银行业务转型的突破口:场景金融 ! 金融服务模式将发生什么变革? “场景金融”标志着金融服务模式的一次关键变革,即将金融服务无缝融入各类活动场景中,实现服务...
中国农业银行副行长徐瀚:银行场景金融建设思考与对策
场景化金融——商业银行的场景服务
聚焦垂直行业场景化服务,银盛支付斩获“金融服务领军企业”大奖
国有大行领跑金融科技,「信用生活」如何帮助中小银行实现零售转型?
发力“场景+社交”属性,银行生活服务App如何“指尖起舞”
邮储银行携场景化服务颠覆消费金融市场
陪伴更有温度,广发银行焕新发布手机银行9.0年度版本