数据预处理
1概述。为了提高数据的质量,数据质量涉及准确性、完整性、一致性、时效性、可信性(反应多少数据是用户信赖的)和可解释性(反映数据是否容易理解)。数据预处理的主要步骤:数据清理、数据集成、数据归约和数据变换。
数据清理:例程通过填写缺失的值,光滑噪声数据、识别或删除离群点,并解决不一致性来“清理”数据。数据集成:集成多个数据库、数据立方体或文件。数据归约:得到数据的简化表示,它小但能够产生同样的分析结果。(包括维归约和数值归约)。规范化、数据离散化和概念分层产生都是某种形式的数据变换。
2数据清理。
数据清理:试图填充缺失值、光滑噪声并且识别离群点、纠正数据中的不一致。
缺失值的处理方法:
忽略元祖:当缺少类标号时常这样 人工填写缺失值:费时,数据量超大时不靠谱 使用一个全局常量填充缺失值:例如NA,+替换,但是如果全用NA可能会形成一个有趣的概念,他们拥有相同的值。 使用属性的中心度量(均值、中位数)填充缺失值:对于对称数据使用均值,而倾斜数据的分布应该使用中位数填充。 使用与给定元祖组同属一类的所有样本的属性均值或中位数